Rajasthan Institute of Engineering & Technology, Jaipur

Branch: - Computer Science Engineering (CSE)

Subject: - Discrete Mathematical Structures (DMS)

Q.1 (a) Explain the Addition Principle theorem with suitable example.

For two finite sets A and B which are disjoint, prove that

$$n(A \cup B) = n(A) + n(B)$$

Sol. (1) (a). Theorem – For two finite sets A and B which are disjoint, prove that

$$n(AUB) = n(A) + n(B)$$

Proof: - Let A have m1 elements than n(A)=m1 and Let B have m2 elements than n(A)=m2.

Since A and B are disjoint (having no elements in common) therefore AUB will have all the elements of A and all the elements of B.

So, numbers of elements in AUB is m1+ m2.

$$n(AUB) = m1 + m2$$

$$n(AUB) = n(A) + n(B)$$

Q.1 (b) Define the Function and Explain the Domain and Co-Domain and Range with suitable example.

Sol. (1) (b).

Function - A function is a relationship between two sets of numbers. We may think of this as a *mapping*; a function *maps* a number in one set to a number in another set. Notice that a function maps values to **one and only one** value. Two values in one set could map to one value, but one value **must never** map to two values: that would be a relation, *not* a function.

A function f is commonly declared by stating its domain X and codomain Y using the expression

$$f: X \to Y$$

Example

f(x) = x/2 ("f of x is x divided by 2") is a function, because each input "x" has a single output "x/2":

- f(2) = 1
- f(16) = 8
- f(-10) = -5

Definition of the Domain of a Function

For a function f defined by an expression with variable x, the implied domain of f is the set of all real numbers variable x can take such that the expression defining the function is real. The domain can also be given explicitly.

Definition of the Range of a Function

The range of f is the set of all values that the function takes when x takes values in the domain.

Definition of the Co-domain of a Function

The Codomain and Range are both on the output side, but are subtly different.

The Codomain is the set of values that could **possibly** come out. The Codomain is actually **part of the definition** of the function.

Example

$$\mathbf{A} = \{1, 2, 3, 4\}$$

$$B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
$$f(x) = 2x+1$$

- The set "A" is the **Domain**,
- The set "B" is the **Codomain**,
- And the set of elements that get pointed to in B (the actual values produced by the function) are the **Range**, also called the Image.

And we have:

• Domain: {1, 2, 3, 4}

• Codomain: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Range: {3, 5, 7, 9}

OR

Q.1 (a) Explain the Pigeonhole Principle Theorem and also Generalized Pigeonhole Principle Theorem Sol. (1) (a).

Pigeonhole Principle - Suppose you have k-pigeonholes and n-pigeons to be placed in them. If n > k(# pigeons) = pigeonholes, then at least one pigeonhole contains at least two pigeons. In problem solving, the "pigeons" are often numbers or objects, and the "pigeonholes" are properties that the numbers/objects might possess.

Pigeonhole Principle Theorem - If "n" number of pigeons or objects are to placed in "k" number of pigeonholes or boxes; where k < n, then there must be at least one pigeonhole or box which has more than one object.

If k is a positive integer and k+1 objects are placed into k boxes, then at least one of the boxes will contain two ore more objects

Proof: Suppose on the contrary that the proposition is false. Then, we have the case that

- (i) k + 1 objects are placed into k boxes, and
- (ii) no boxes contain two or more objects. From (ii), it follows that the total number of objects is at most k(since each box has 0 or 1 objects). Thus, a contradiction occurs

Generalized Pigeonhole Principle Theorem – If n-pigeons are sitting in k pigeonholes, where n > k, then there is at least one pigeonhole with at least n/k pigeons.

If k is a positive integer and N objects are placed into k boxes, then at least one of the boxes will contain N/k or more objects.

Here, |x| is called the ceiling function, which represents the round-up value of x

If N objects are placed into k boxes, then there is at least one box containing at least [N/k] objects.

Proof by contradiction: Suppose that none of the boxes contains more than $\lceil N/k \rceil$ objects. Then, the total number of objects is at most $\lceil N/k \rceil$ -1 objects.


$$[N/k] < (N/k)+1$$

 $k([N/k]-1) < k[([N/k]+1)-1]=N$

This is a contradiction because there are a total of N objects.

I don't understand how that inequality shows it's a contradiction, how did they get that the inequality shows less than N objects?

Q.1 (b) Define the Constant Function and Proof the following Theorem

The logarithmic function $f(x) = \log_a(x)$ is the inverse of the exponential function g(x) = ax **Sol.** (1) (b).

 ${\bf Q.2}$ (a) Define the Intersection operation of the Set and define also its properties with suitable example. Sol. (2) (a).

- Time Description in
2) Intersection operation: The intersection
of two sets A and B, denoted by AAB, ei defined as the set containing those dements which belong to A and B both
defined as the set containing those
ofernents which belong to A and is being
AND = En: NEA and NEB3
And nead as "A intersection B"
Verm diagram of AAB.
The same of the sa
SE THE RESIDENCE OF THE PARTY O
The intersection of a finite number of
the set A, As, An is donoted by
$\hat{\Omega} \hat{A}_{-} = \hat{A}_{-} \hat{\Omega} \hat{A}_{-} \dots \hat{\Omega} \hat{A}_{-}$
$\Omega A_n = A_1 \Omega A_2 \dots \Omega A_n$
Many and
nAn = {n: neAn, 1526 = n3
eg of A={n: m in multiple of 33= {3,6,9,12,15,18,}
eg if A={n: n in multiple of 33={3,6,9,12,15,38,} B={n: n in multiple of 33={1,8,12,16,20,173.
The state of the s
AAB = { n : n is a common multiple of sand
307444
ANB = {12,24, 86, 48,60, 3
The Colors and the to be about the same in
-> Properties of Intersection Operation -
THE RESERVE OF THE PARTY OF THE
12 AAA = A
2) And = \$
3.7 A A U = A
4. And = BAA
sig (Anb) nc = An(Bnc).

Q.2 (b) What is the Set and define the Complement of a set and also define the properties with suitable example.

Sol. (2) (b). The present definition of a set may sound very vague. A set can be defined as a unordered collection of entities that are related because they obey a certain rule.

'Entities' may be anything, *literally*: numbers, people, shapes, cities, bits of text, ... etc

The key fact about the 'rule' they all obey is that it must be *well-defined*. In other words, it must describe *clearly* what the entities obey. If the entities we're talking about are words, for example, a well-defined rule is: X is English

The set of all elements of U (universal set) that are not elements of $A \subseteq U$ is called the complement of A. The complement of A is

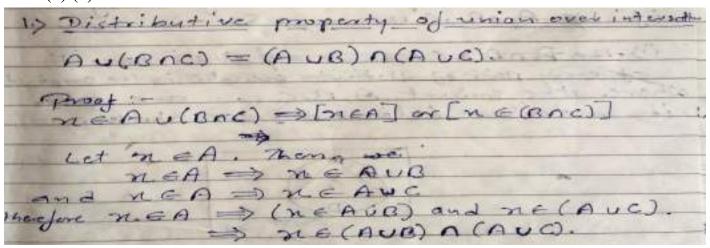
denoted by A'

 $A' = \{x : x \in U \text{ and } x \text{ not } \in A\}$

For example,

Let $U = \{a,b,c,d,e,f,g,h\}$ and $A = \{b,d,g,h\}$.

Then $A' = \{a, c, e, f\}$


In Venn diagram A', the complement of set A

OR

Q.2 (a) What is Distributive Properties and explain and proof the following rules with suitable example.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Sol. (2) (a).

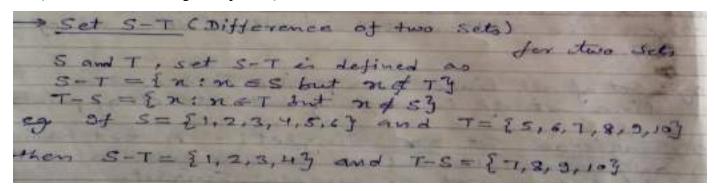
 $\mathbf{Q.2}$ (b) What is Set and define the Subset and its properties and Set S – T (Difference of Two Sets) with suitable example.

Sol. (2) (b).

Set - A set is a collection of well-defined objects. For a collection to be a set it is necessary that it Should be well defined.

If a collection is a set then each object of this collection is said to be an element of this set. A set is usually denoted by capital letters of English alphabet and its elements are denoted by small Letters.

For example, A = Toy elephant, packet of sweets, magazines.

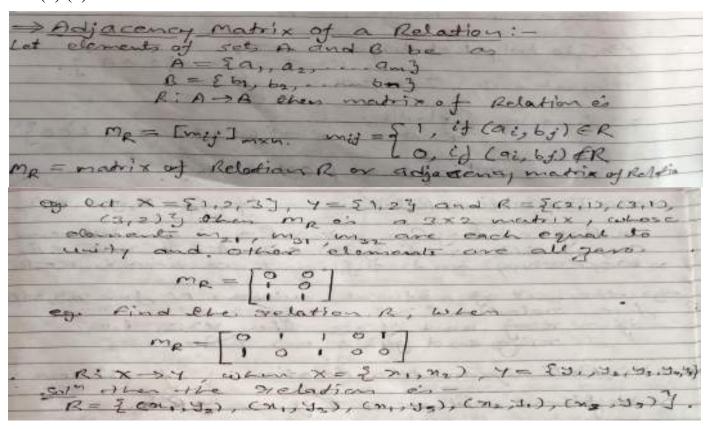

A set is represented by listing all its elements, separating these by commas and Enclosing these in curly bracket.

If V be the set of vowels of English alphabet, it can be written in Roster form as:

 $V = \{ a, e, i, o, u \}$

In this form elements of the set are not listed but these are represented by some common Property.

Let V be the set of vowels of English alphabet then V can be written in the set builder form as: $V = \{x : x \text{ is a vowel of English alphabet}\}$



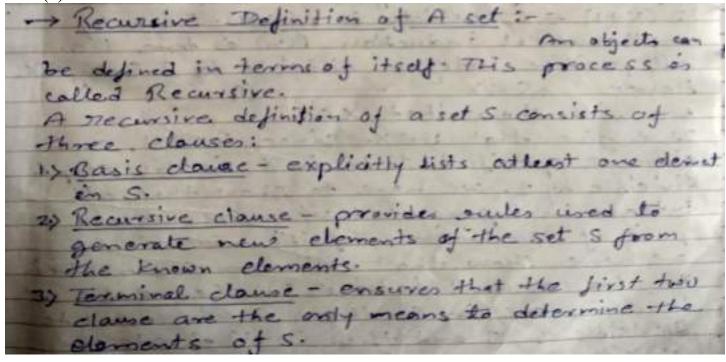
Q.3 (a) Explain the Matrix Representation of graph.

Find the Adjacency Matrix of the following relation.

 $X=\{1,2,3\}, Y=\{1,2\} \text{ and } R=\{(2,1),(3,1),(3,2)\}.$

Sol. (3) (a).

Q.3 (b) Define the Join and Meet of Boolean Matrices. Also Perform the Join and Meet operation of following Two Boolean Matrices.


Sol. (3) (b).

- Jaim and Meet of Boolean Matrices -
Let A = [ay] wan and B = [big] wan be two Bookens
The join of A and B , donated by AVB E, a matile
$Cis = \begin{cases} 1 & id & aij = 1 \text{ or } bij = 1 \\ a & is & aij = 0 - bis \end{cases}$
The west of A and B , devoted By AAB, is a matrix.
$aij = \begin{cases} 1 & if aij = 1 = bij \\ 0 & if aij = 0 \text{ or } bij = 0 \end{cases}$
[AAB = D]
* The foin and meet of two Burlean vertix are
eg. computer the join and west of the merbices.
C = AVB = [
La La La la ol

OR

Q.3 Explain the Recursive definition of a Set with suitable example. Also define Power Set with suitable example.

Sol. (3)

Power Set: - The set of all subsets of a given set & in called the power set of s and in denoted by P(S). i.e.

P(S) = & T: T SSY

g and S are bothe member of P(S).

eg let S = £0,15} then P(S) = {£03,153,£053,\$7}.

Q.4 Define the following functions with examples:

Q.4 (i) Floor and Ceiling functions

Sol. (4) (i).

Let R be the set of meal number, then the Junction of R > R is called the floor Junction denoted by Lx1, if & f (n) = 1 x) = the largest integer that is less than an equal to x.

Eq. [7.2] = 7; L-9.2] = -10; L51=5.

Soil Ceiling Function:

A function of R > Z

Be said to be the ceiling function, denoted by FNI, if g(n) = Fx1 = the smallest

integer that is greater than or equal to n

ex F2.57 = 3 [5.3] = 5 [71] = 17.

The area of the small contact of the smallest

integer that is greater than or equal to n

ex F2.57 = 3 [5.3] = 5 [71] = 17.

The area of the small contact of the small conta

Q.4 (ii) Div and Mod functions.

Sol. (4) (ii).

>8 > Div Function :-The div function on divy. denoted by div (n, y), is the quotient when n is divided the remainder should be non-negative. div (22,5)= 22 div5 = 4 div (5,6) = 0. we can define the other operators in terms of the div operator of fellow is Floor function ii) cailing function [9] - div(-23,5) = - [quotient when (-25+2). divided by 5 (to make memainde - (-5) = 5. 372 mod Function The word function in wood of demotes the - commission divided by a positiv intend J. C) 1211 wood 5 = 41 se mud (15,3) = 15 mod 3 = 0 the mad function can be used a given preventer day. to today as treading what day of the w St = 100 mad 7 - 0 The it will be Thursday in two days from

OR

Q.4 Define the following terms with examples:


(i) Equal set and Universal set.

Sol. (4)(i)

Equal sets: - When two sets S and T conting consists of the Same element, they are called equal and we shall write set if s and T are not equal, we shall write set if s and T are not equal, we shall something to ERAM, Shyam, Mahang T = EMBhan, Shyam, Mahang T = EMBhan, Shyam, Ramg equition 3 = E1.2,33 and T = E2.1,1,2,2,3,1,33 and the s = T. Since O an an element of T but not of S.

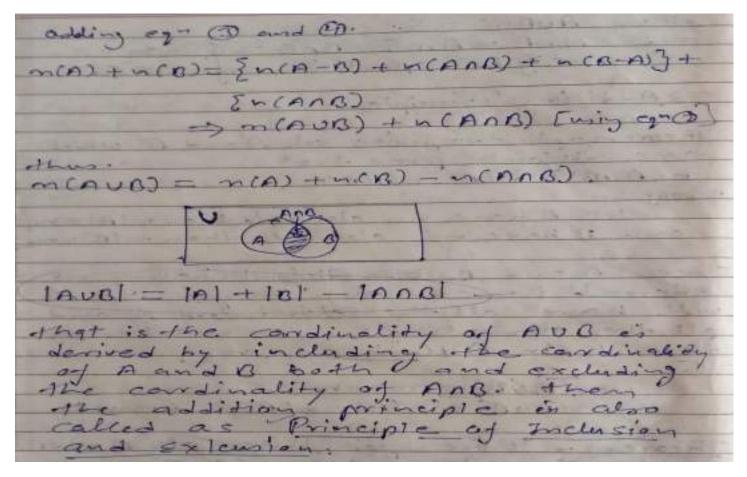
Q.4 (ii) Finite set and Infinite set.

Sol. (4)(ii)

Rajasthan Institute of Engineering & Technology, Jaipur

Branch: - Computer Science Engineering (CSE)

Subject: - Discrete Mathematical Structures (DMS)


Q.1 (a) Explain the Addition Principle theorem with suitable example.

For two finite sets A and B, prove that

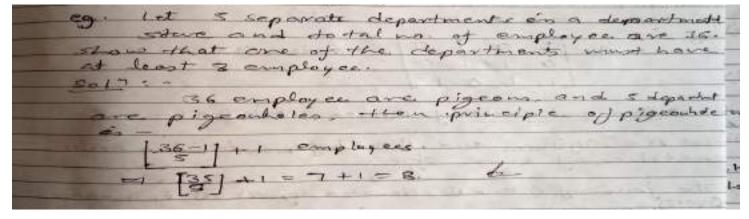
 $n(A\ U\ B\)=n(A)+n(B)-n(A\ \cap B)$

Sol. (1)(a)

=> Addition Principle:
CONTRACTOR OF THE PARTY OF THE
Theorem - for two divite sets A and B which are disjoint, prove that n(AuB) = mi(A) + mi(B).
n(AUB) = mi(A) + vi(B).
Paraj :-
and B have my elements than m(B)=my
and Is have my claments than m(B)=m2
since a and B are disjoint (having no
exements in common) theyer AUB
will have all the elementrof A and
all the cloments of B. so winder of
dements in AUB is my Img.
m(AUB) = mint ma
niaus) = nia) nics). Grand
Theorem - Prove Jer divite sets A and B. n (AUB) = n(A) + n(B) - n(A).
m (AUB) = h(A) + h(B) - h(A) .
(A-B) U(A AB) UCB-AL-HOB
and and and are pair wite.
disjoint, the fee
n(AUB) = n(A-B) + n(AAB) + n(B-A) -0
buther h = (h - is) (chinis).
and ca-B) A ca AB) = q
5, n(A) = n(A-B) + n(A AB) - (D)
5, n(A) = n(A-B) + n(A AB) - 50

Q.1 (b) Explain the Generalized Pigeonhole Principle Theorem With suitable example.

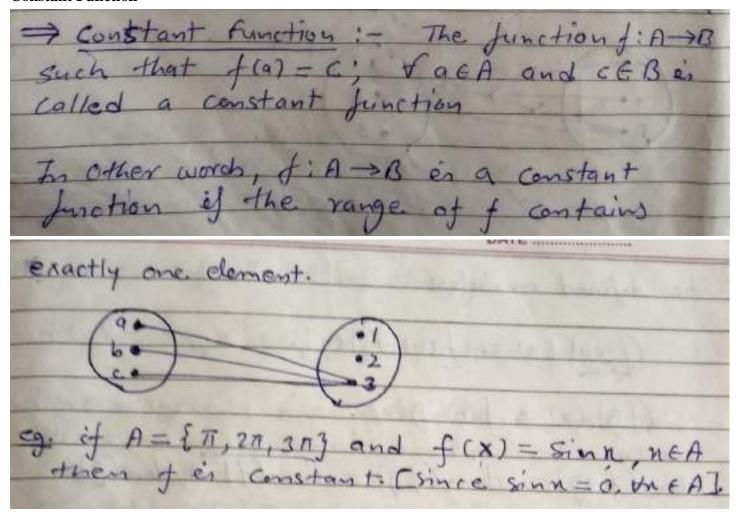
Sol. (1)(b)


Generalized Pigeonhole Principle Theorem – If n-pigeons are sitting in k pigeonholes, where n > k, then there is at least one pigeonhole with at least n/k pigeons. If k is a positive integer and N objects are placed into k boxes, then at least one of the boxes will contain N/k or more objects. Here, $\lceil x \rceil$ is called the ceiling function, which represents the round-up value of x. If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

Proof by contradiction: Suppose that none of the boxes contains more than $\lceil N/k \rceil$ objects. Then, the total number of objects is at most $\lceil N/k \rceil$ -1 objects.

$$[N/k] < (N/k)+1$$

 $k([N/k]-1) < k[([N/k]+1)-1]=N$


This is a contradiction because there are a total of N objects.

I don't understand how that inequality shows it's a contradiction, how did they get that the inequality shows less than N objects?

Q.1 (a) Define Constant Function, Equal Function and Identity Function with suitable example. Sol. (1)(a)

Constant Function -

Equal Function –

Equal Function: -

Two functions of and gare said

to be equal iff -

1) the domain of
$$f =$$
 the domain of g .

2) the co-domain of $f =$ the co-domain of g .

2) $f(n) = g(n)$ for every n belonging to their common domain.

So let $A = \{1,2\}$, $B = \{3,6\}$
 $f(1) = 3 = g(1)$ $f(2) = 3n$
 $f(1) = 3 = g(1)$ $f(2) = 3n$

Identity Function -

→ Identity	Function:	10
	A Junction +: A > A	óı
soud to be	every dement of A to the clar	1
itself.	every dement of A to the clar	ment
	is an identity iff f(n) = n , Vn	EA

- **Q.1** (b) Define the following function with suitable example.
 - (i) Polynomial Function

Sol. (1)(b)(i)

Polynomial Function-

A function
$$f: R \rightarrow R$$
 of the form

$$f(n) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x_n + a_0$$
where $a_i \in R$, $i = 1$ to n and $a_n \neq 0$ in called a polynomial function of degree n .

Jor $n = 1$, $f(n) = a_1 x + a_0$ (linear function)

for $n = 2$, $f(n) = a_2 x^2 + a_1 n + a_0$ (quadratic function).

Q.1 (b) (ii) Exponential Function

Sol. (1)(b)(ii)

Exponential Function –

Equal Function: -

Two functions of and gare said

to be equal iff-

1) the domain of
$$f =$$
 the domain of g .

2) the co-domain of $f =$ the co-domain of g .

2) $f(n) = g(n)$ for every n belonging to their common domain.

So let $A = \{1, 2\}$, $B = \{3, 6\}$
 $f(1) = 3 = g(1)$ $f(2) = 3n$
 $f(2) = 6 = g(2)$ $f(2) = 3n$

> Proporties of Exponential function The apparantial function f(n) = an them x,> n2 > fcn, 1> f (Na) ocaci, then n, my = for of our metlections of each other am ar and (am) - and

OR

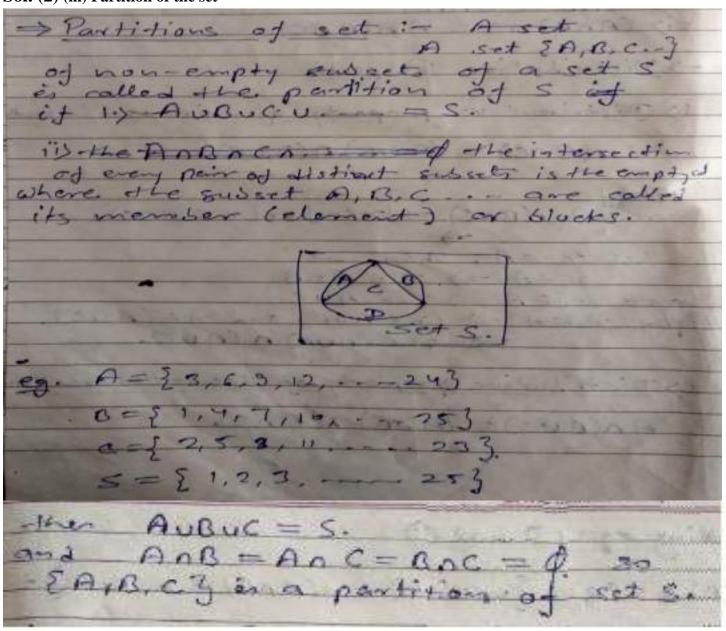
Q.2 Explain the following term with suitable example.

(i) Singleton Set

(ii) Disjoint Set

(iii) Partition of the set. (iv) Cardinality of A Finite set.

(v) Set of Sets.


Sol. (2)(i) Singleton Set -

-> Singleton Set ox Singlet: - A singleton set or simply singlet. 5:= 863.

Sol. (2) (ii) Disjoint Set –

Disjoint Set: - Two set S and T are said be disjoint when they have no element of S is and no element of Terins. ey Let S be the set {a,b,c} and I be the set Le,f,gy. Then S and T are disjoint.

Sol. (2) (iii) Partition of the set –

Sol. (2) (v) Set of Sets.-

-) Set of Sets:
A set itself many may some.

Hince be an element of another set.

Then the latter set in called the set of sets.

Q.3 (a) Define the Comparable and Non-Comparable set with suitable example.

Sol. (3)(a)> Comparable Sets: - Two sets Sand Tare to be comparable it set or Tes. i.e. the sets is a subset of the other. eg. S= {1,2,34 and T= {1,2,3,44. Then Ses comparable to To became Se -> Non-Comparable Set :hon- comparable if SIT i.e. none of the set in subset S={0,69, T={6,d,e3. \$T and TES. the Sand T are not comparable.

Q.3 (b) What is the Function? Define the f-image, f-set and Representation of function by a diagram.

Sol. (3)(b)

Function -

Let A and B are two given sets. Let there exist a rule denoted by f, which associate to each element of A, a unique element of B. Then f is called a function or mapping from A to B. If in denoted by

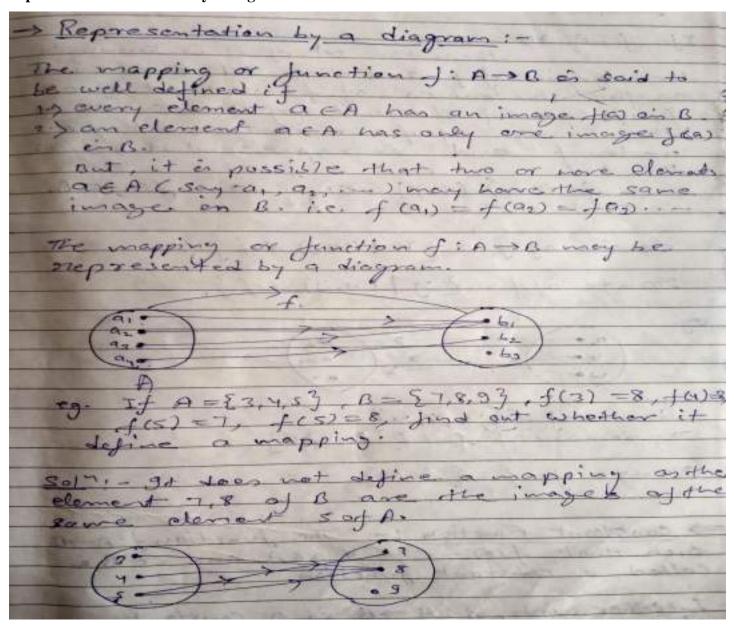
f: A > B

which needs f is a function from A to B or f maps A to B.

f-image -

=> f-image:
Element to (EB) corresponding to

any element a (EA) will be denoted by


the symbol f(a) and in called f-image

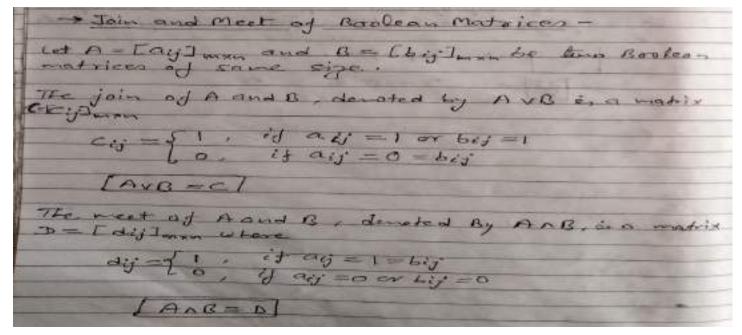
of a.

f-set -

-> -f-set: - The set dormed by all the finage of the elements of A is called the image set and is denoted by of (A).

Representation of function by a diagram-

Q.3 (a) Explain the Matrix Representation of graph.


Find the Adjacency Matrix of the following relation.

 $X=\{1,2,3\}, Y=\{1,2,3\} \text{ and } R=\{(1,3),(1,2),(2,1),(3,1),(3,2),(3,3)\}.$

Sol. (3)(a)

Q.3 (b) Define the Join and Meet of Boolean Matrices. Also Perform the Join and Meet operation of following Two Boolean Matrices.

Sol. (3)(b)

STATE STATE OF STATE			E
* The foin as	con branic	601	
eg. comput	is the join	and weet	a) the medica
A= [1]	8-1	017	10001
0 0		0 0	has no be the second of a
		1 0 1	
C = AVB =		D= AAB	0 0 0
	/		10011
	0 0 1		1000
Man 31	· pak'	- FA - 2 FB	[0 1 0]

Q.4 (a) What is the function? Explain the Equal Function and Sum and Product of Function with suitable example.

Sol. (4)(a)

Function -

Equal Function –

Equal Function: -

Two functions of and gare said

to be equal iff-

1) the domain of
$$f =$$
 the domain of g .

2) the co-domain of $f =$ the co-domain of g .

2) $f(n) = g(n)$ for every n belonging to their common domain.

So let $A = \{1,2\}$, $B = \{3,6\}$
 $f(n) = 3 = g(n)$ $f(n) = n^2 + 2$
 $g : A \rightarrow B$; $f(n) = n^2 + 2$
 $g : A \rightarrow B$; $f(n) = 3$

Sum and Product of Function – > Sum and Product of Function Let f: A→R and g: B → R be two function. Then their sum f +9 and product fg con be defined on below (++9) (n) = + (n) + 9 (n). (fg) (n) = f(n). g(n). dom (f+9) = dom (fg) = dom (f) n dom (g) are down (f) = (-co, 00) and dom (9)=[1,00 the obtain the sum and product of face (f+g)(n) = f(n) + g(n)= $n^2 + \sqrt{n-1}$ (fg) (n) = for, g(n). 1 dom (9) = [1,00)

when not good are defined only thus dom (fg) = [1,00).

 ${\bf Q.4}$ (b) Explain the Logarithmic function and also define the Properties of Logarithmic function. Sol. (4)(b)

tet al #1) & Rt and n y & R such that y = 9th Them I are called leg arithms of y to the base a demeted by log y to the base a demeted by log y to me log y to y = 9th the base function of Rt > R defined by for the logarithmole function with same a source are so y = and is always positive for every neck. Sure can say that n = log y is defined only when y > 0. The domain of logarithmic function is (0,00) and its stange is (-0,00). Three bases of legarithms, namely e, 2 and long are after used. log n = On n [natural logarithms] log n = log n [commonly used in Computer and the logarithms of the logarithms of the logarithms of the logarithmic graph to so the intercept of the logarithmic graph to y for all for all y for all for a logarithmic graph to y for all for and y for any for	501. (4)(0)
Then no called by such that you's Then no called by arithm of you The base a denuted by lag you's The the function of R' R defined by f(n) = log n or the logarithmic function with base a. The description of logarithmic function with base a. The description of logarithmic function of the base a. The description of logarithmic function of (0,0) and its stange is (-on, as). There bases at legisthmic function of (0,0) and its stange is (-on, as). There bases at legisthmic function of (0,0) and its stange is (-on, as). There bases at legisthmic function of computer are of ten used. Log n = log n [commonly used in computer science] log n = log n [bare 10 is usually and to sol the deminant of logarithmic functions. Legarithmic function of (n) = log n. Legarithmic function of (n) = log n. 12 down(f) = (100) . Stange of logarithmic graph 1 22 for all of en intreasing. Ly anie is a vertical companion of the graph such atter and their graphs are mirror linear contraction of the line of a mirror linear contraction of the line of a mirror linear contraction and their graphs are mirror linear contraction of the line of a mare inverse of	-> 3> Logarithmic Functions:-
fine function of i R 1 -> R defined by fine = log x or the logarithmic function with base a muce a 20 se y = and or always positive for every x the spec con say that n = log y is defined only when y so. The domain of logarithmic function is (0,0) and its mange is (-on, on). Three bases of logarithms, namely e, 2 and low ere of ten used. log x = log x Lominanty used in Congulty log x = log n [base 10 is usually anitived] **Properties of Logarithmic functions (eganithmic function of (n) = log x logarithmic function of (n) = log x 12 down(f) = (e, o), gange (f) = (-o, o). 22 for axl of in increasing 13 for axl of in increasing 14 oxide is a vertical asymptotic of the graph oxide of the graph six function and gen = an are inverse of each atternant and their graphs are inverse of and other and their about the line J = x.	
fine function of i R 1 -> R defined by fine = log x or the logarithmic function with base a muce a 20 se y = and or always positive for every x the spec con say that n = log y is defined only when y so. The domain of logarithmic function is (0,0) and its mange is (-on, on). Three bases of logarithms, namely e, 2 and low ere of ten used. log x = log x Lominanty used in Congulty log x = log n [base 10 is usually anitived] **Properties of Logarithmic functions (eganithmic function of (n) = log x logarithmic function of (n) = log x 12 down(f) = (e, o), gange (f) = (-o, o). 22 for axl of in increasing 13 for axl of in increasing 14 oxide is a vertical asymptotic of the graph oxide of the graph six function and gen = an are inverse of each atternant and their graphs are inverse of and other and their about the line J = x.	Let a (#1) ER and Ny GR Such other y = 9"
fine function of i R 1 -> R defined by fine = log x or the logarithmic function with base a muce a 20 se y = and or always positive for every x the spec con say that n = log y is defined only when y so. The domain of logarithmic function is (0,0) and its mange is (-on, on). Three bases of logarithms, namely e, 2 and low ere of ten used. log x = log x Lominanty used in Congulty log x = log n [base 10 is usually anitived] **Properties of Logarithmic functions (eganithmic function of (n) = log x logarithmic function of (n) = log x 12 down(f) = (e, o), gange (f) = (-o, o). 22 for axl of in increasing 13 for axl of in increasing 14 oxide is a vertical asymptotic of the graph oxide of the graph six function and gen = an are inverse of each atternant and their graphs are inverse of and other and their about the line J = x.	Then is collect begarithm of y to
fine function of i R 1 -> R defined by fine = log x or the logarithmic function with base a muce a 20 se y = and or always positive for every x the spec con say that n = log y is defined only when y so. The domain of logarithmic function is (0,0) and its mange is (-on, on). Three bases of logarithms, namely e, 2 and low ere of ten used. log x = log x Lominanty used in Congulty log x = log n [base 10 is usually anitived] **Properties of Logarithmic functions (eganithmic function of (n) = log x logarithmic function of (n) = log x 12 down(f) = (e, o), gange (f) = (-o, o). 22 for axl of in increasing 13 for axl of in increasing 14 oxide is a vertical asymptotic of the graph oxide of the graph six function and gen = an are inverse of each atternant and their graphs are inverse of and other and their about the line J = x.	the base a demoted by log IV. i.e.
fine function of i R 1 -> R defined by fine = log x or the logarithmic function with base a muce a 20 se y = and or always positive for every x the spec con say that n = log y is defined only when y so. The domain of logarithmic function is (0,0) and its mange is (-on, on). Three bases of logarithms, namely e, 2 and low ere of ten used. log x = log x Lominanty used in Congulty log x = log n [base 10 is usually anitived] **Properties of Logarithmic functions (eganithmic function of (n) = log x logarithmic function of (n) = log x 12 down(f) = (e, o), gange (f) = (-o, o). 22 for axl of in increasing 13 for axl of in increasing 14 oxide is a vertical asymptotic of the graph oxide of the graph six function and gen = an are inverse of each atternant and their graphs are inverse of and other and their about the line J = x.	, va
fine log nection of R' R' defined by fine - log nection with Base a. or the dogarithmic function with Base a. more as a se y and en always positive for every neck. spic con say that n = log y en defined only when you. The domain of leganithmic function in (0,00) and its stange is (-on or). The bases of legalithms, namely e, 2 and law ere of ten used. log n = an [commonly used in Computer science] log n = log n [base 10 is usually anit tools by charites of Logarithmic functions. (eganithmic function of (n) = log n. 12 dom (f) = (0,00), stange (f) = (-on or). 13 for any of intercept of the legalithmic graphs 13 for any of intercepting. 14 ocals, of intercasing. 15 for any of intercasing. 16 ocals, of intercasing. 17 ocals is a vertical crymphita of the graphs 20 for and gen = an are inverse of enchanter and draw graphs are inverse of enchanter and draw graphs are inverse of	$y = \log y \Leftrightarrow y = a^{-1}$
or of he logarithmic function with base a. The domain of logarithmic function is (0,00) and when you. The domain of logarithmic function is (0,00) and its stange is (0,00). Three bases of logarithms, namely e, 2 and low are after used. log n = log n [base 10 is usually amit sod]. Proporties of Logarithmic fine tions. logarithmic function of (n) = log n. 12 down (f) = (0,00), stange (f) = (-20,00). 2 for all, of extending. 13 for all, of extending. 15 for all, of extending. 16 decreasing. 17 and condition of (n) = and the graph. 18 for and generation are invaried of 2 for and generation are invared of 2 for and other and the line of x	
exery ner y = and en always positive for exery ner of that n = loggy en defined and y when y's a. The deman of logarithmic function is (0,0) and its stange is (-on, on). There bases of logarithms, namely e, 2 and lower of ten used. log n = 2n n	
exery ner y = and en always positive for exery ner of that n = loggy en defined and y when y's a. The deman of logarithmic function is (0,0) and its stange is (-on, on). There bases of logarithms, namely e, 2 and lower of ten used. log n = 2n n	fon = log n
every nER. Some con sony that $n = log y$ is defined only when $y > 0$. The deman of leganithmic function is $(0, \infty)$ and its stange is $(-\infty, \infty)$. Three bases of legalithms, manely e , 2 and $log = 0$ are after used. Log $n = 0$ in Enatural logarithms? Log $n = 0$ in [base 10 is usually assisted]. Supervises of Logarithmic Finetions. Logarithmic function of $(n) = log n$. 13 down(f) = $(0, \infty)$ grange $(f) = (-\infty, \infty)$. 15 down(f) = $(0, \infty)$ grange $(f) = (-\infty, \infty)$. 27 for all, of in increasing. 43 for all, of in increasing. 45 for and fine asymptotic of the graph. 28 for and $(0, \infty)$ are an inverse of $(0, \infty)$ and $(0, \infty)$ and $(0, \infty)$ are an inverse of $(0, \infty)$ and $(0, \infty)$ and $(0, \infty)$ are an inverse of $(0, \infty)$ and $(0, \infty)$ and $(0, \infty)$ are an inverse of $(0, \infty)$ and $(0, \infty)$ and $(0, \infty)$ are an inverse of $(0, \infty)$ and $(0, $	
when you. The demain of logarithmic function is (0,0) and its stange is (-00,00). There bases of logarithms, namely e, 2 and 10. are of ten used. log n = On n	James James and alle a
when you. The demain of logarithmic function is (0,0) and its stange is (-00,00). There bases of logarithms, namely e, 2 and 10. are of ten used. log n = On n	Since 61 >0 50 H = 61 to colling of positive has
when you. The demain of logarithmic function is (0,0) and its stange is (-00,00). There bases of logarithms, namely e, 2 and 10. are of ten used. log n = On n	every nER
the deman of legarithmic function is (0,0) and its stange is (-0,0). There bases of legrithms, namely e, 2 and later and lagrantitums. log n = On n	
the deman of legarithmic function is (0,0) and its stange is (-0,0). There bases of legrithms, namely e, 2 and later and lagrantitums. log n = On n	save can say that n = logy is defined only
the deman of legarithmic function is (0,0) and its stange is (-0,0). There bases of legrithms, namely e, 2 and later and lagrantitums. log n = On n	when you.
log n = On n [commonly e, 2 and 10.] log n = On n [commonly used in Computer science] log n = log n [bare 10 is usually omit tod] Proporties of Logarithmic First tions (ogarithmic function of (n) = log n logarithmic function of (n) = log n 13 dom (f) = (0,00), grange (f) = (-20,00). 2) The n intercept of the logarithmic graph 1 2) for all, of en increasing. In a case, of indecessing. In a case, of indecessing and the case in a case in a case of the case, of the of the	
log n = On n [commonly e, 2 and 10.] log n = On n [commonly used in Computer science] log n = log n [bare 10 is usually omit tod] Proporties of Logarithmic First tions (ogarithmic function of (n) = log n logarithmic function of (n) = log n 13 dom (f) = (0,00), grange (f) = (-20,00). 2) The n intercept of the logarithmic graph 1 2) for all, of en increasing. In a case, of indecessing. In a case, of indecessing and the case in a case in a case of the case, of the of the	The domain of sugarithmic function as (0,00) and
log n = On n [commonly e, 2 and 10.] log n = On n [commonly used in Computer science] log n = log n [bare 10 is usually omit tod] Proporties of Logarithmic First tions (ogarithmic function of (n) = log n logarithmic function of (n) = log n 13 dom (f) = (0,00), grange (f) = (-20,00). 2) The n intercept of the logarithmic graph 1 2) for all, of en increasing. In a case, of indecessing. In a case, of indecessing and the case in a case in a case of the case, of the of the	10 mge es (-00,00).
log n = 0n n [Commonly used in Computer Science] log n = log n [Commonly used in Computer Science] log n = log n [Commonly used in Computer Science] Proporties of Logarithmic First tions logorithmic function of (n) = log n logorithmic function of (n) = log n 12 down (f) = (0,00), grange (f) = (-000). 13 to n intercept of the logarithmic graph 1 23 for axi, of increasing. 43 for axi, of increasing. 44 oracle of a vertical asymptotic of the graph 53 for log n and genze are invorce of conclusion and their graphs are misser image	
log n = 0n n [Commonly used in Computer Science] log n = log n [Commonly used in Computer Science] log n = log n [Commonly used in Computer Science] Proporties of Logarithmic First tions logorithmic function of (n) = log n logorithmic function of (n) = log n 12 down (f) = (0,00), grange (f) = (-000). 13 to n intercept of the logarithmic graph 1 23 for axi, of increasing. 43 for axi, of increasing. 44 oracle of a vertical asymptotic of the graph 53 for log n and genze are invorce of conclusion and their graphs are misser image	the bates of regulations, housing e, 2 and
log n = log n [bare 10 is usually assisted]. Proporties of Logarithmic First House. Logarithmic furction f(n) = log n. 12 dom (f) = (0,00), grange (f) = (-0,00). 2.7 The n intercept of the logarithmic graph 1. 2.7 for all, of en increasing. Logarithmic graph 1. 2.7 for all, of en increasing. Logarithmic graph 1. 2.8 for all of en decreasing. Logarithmic graph. 2.9 for all of end decreasing. Logarithmic graphs are inverse of each other and their graphs are inverse of each other and their graphs are mirror linear and linear and linear and linear	est of the used.
log n = log n [bare 10 is usually assisted]. Proporties of Logarithmic First House. Logarithmic furction f(n) = log n. 12 dom (f) = (0,00), grange (f) = (-0,00). 2.7 The n intercept of the logarithmic graph 1. 2.7 for all, of en increasing. Logarithmic graph 1. 2.7 for all, of en increasing. Logarithmic graph 1. 2.8 for all of en decreasing. Logarithmic graph. 2.9 for all of end decreasing. Logarithmic graphs are inverse of each other and their graphs are inverse of each other and their graphs are mirror linear and linear and linear and linear	los n = ann [natural losevither]
Proporties of Logarithmic Finetions. Logarithmic function of (n) = log n. 13 down (f) = (0,00). Trange (f) = (-ea,00). 2.7 The n-intercept of the logarithmic graph 1. 2.7 for a>1, of increasing. Loyarithmic graph 1. 2.8 for a>1, of increasing. Loyarithmic graph 1. 2.9 for a>1, of increasing. Loyarithmic graph 1. 2.9 for a>1, of increasing. 2.9 for a>	Oe .
Proporties of Logarithmic Finetions. Logarithmic function of (n) = log n. 13 down (f) = (0,00). Trange (f) = (-ea,00). 2.7 The n-intercept of the logarithmic graph 1. 2.7 for a>1, of increasing. Loyarithmic graph 1. 2.8 for a>1, of increasing. Loyarithmic graph 1. 2.9 for a>1, of increasing. Loyarithmic graph 1. 2.9 for a>1, of increasing. 2.9 for a>	loc n = Qan Lcommonly used in Computer
Proporties of Logarithmic Finetions. Logarithmic function of (n) = log n. 13 down (f) = (0,00). Trange (f) = (-ea,00). 2.7 The n-intercept of the logarithmic graph 1. 2.7 for a>1, of increasing. Loyarithmic graph 1. 2.8 for a>1, of increasing. Loyarithmic graph 1. 2.9 for a>1, of increasing. Loyarithmic graph 1. 2.9 for a>1, of increasing. 2.9 for a>	on science)
Proporties of Logarithmic Finetions. Logarithmic function of (n) = log n. 13 down (f) = (0,00). Trange (f) = (-ea,00). 2.7 The n-intercept of the logarithmic graph 1. 2.7 for a>1, of increasing. Loyarithmic graph 1. 2.8 for a>1, of increasing. Loyarithmic graph 1. 2.9 for a>1, of increasing. Loyarithmic graph 1. 2.9 for a>1, of increasing. 2.9 for a>	long in = log in [bare 10 is usually omit tod]
logornithmic function of (m) = log n. 12 down (f) = (0,00), grange (f) = (-00,00). 2.7 The n intercept of the logorithmic graph 1. 2.7 for a>1, of in increasing. 4.5 for a>1, of in decreasing. 4.6 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.7 for a>1, of in decreasing. 4.6 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.7 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.8 for a>1, of in decreasing.	010
logornithmic function of (m) = log n. 12 down (f) = (0,00), grange (f) = (-00,00). 2.7 The n intercept of the logorithmic graph 1. 2.7 for a>1, of in increasing. 4.5 for a>1, of in decreasing. 4.6 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.7 for a>1, of in decreasing. 4.6 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.7 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.8 for a>1, of in decreasing.	
logornithmic function of (m) = log n. 12 down (f) = (0,00), grange (f) = (-00,00). 2.7 The n intercept of the logorithmic graph 1. 2.7 for a>1, of in increasing. 4.5 for a>1, of in decreasing. 4.6 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.7 for a>1, of in decreasing. 4.6 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.7 for a>1, of in decreasing. 4.7 anis is a vertical asymptote a) the graph. 5.8 for a>1, of in decreasing.	-> Properties of Logarithmic Functions
1) down (f) = (0,00), grange (f) = (-000). 2) The n intercept of the legarithmic graph 1 2) for all, of in increasing. 40 1- anis & a vertical asymptote of the graph. 5) f(n) = legar and g(n) = an are inverse of each other and their graphs are mirror I mape	
1) down (f) = (0,00), grange (f) = (-000). 2) The n intercept of the legarithmic graph 1 2) for all, of in increasing. 40 1- anis & a vertical asymptote of the graph. 5) f(n) = legar and g(n) = an are inverse of each other and their graphs are mirror I mape	logoverthenic function of (n) = seg n.
2) for all, of in increasing. Jer alact of in decreasing. 45 4-anis is a vertical asymptote of the graph. 5) fon = log x and gon = an are invorce of each atter and their graphs are mirror I maye	
us framis is a vertical asymptote of the graphe so fine log & and gens = an are invorce of each atter and their graphs are mirror I make	12 don't = () and the less within course 1
us framis is a vertical asymptote of the graph. six fine log x and gine and are invorce of each atter and their graphs are mirror I mage	2.7 the ne intercept of
sy fine log x and gine and are involved of	30 for ast, of the descensions.
each other and their graphs are mirror I mage	the graph of a weather as we and the graph
al mach other about the line J=x.	the female and across an are inverse of
ad mach other poor The state of the	I all a and their graphs are mirror I mane
as the graphs of y = log n and y = log n are	- al each other point the sine of the
oreflection of each other about the X-anis	to the maphs of you log n and you log in are
	mediection of each other about the X-ani
the areas - (et a(+1), b(+1), n and y are any	the areas - let a(+1), b(+1), is and y are any
positive wend number and min ER Them.	theorems (et al #1), b(#1), n and y are any positive wend number and mn ER Them.

 $\boldsymbol{Q.4}$ (a) Explain the Absolute Value Function and Characteristic function with suitable example.

Sol. (4)(a)

Absolute Value Function -

-> 43 Absolute Value Function: -	
The Junction of : R > R defined by	Films III
- fens = 1x1 = (-x, xco	
is called absolute value function.	
The graph of the function y=MI &	as show.
J= m >	1x 1-2-6-431 = 1-2+41=2
	13 1-2-51
45° 145° ×	= 1-71-7-
1-81 = 3: -11. absolute value fi is u	CACH TO MICHAIL

Characteristic function -

-> 2) Characteristic Function :- fet A be a subset
Let A be a subset
The characteristic function of A in defined as a function from U to Eo. 13. i.e.
: U → {0,13.
by the suite facile of 1, if it is a
This function is used in supresenting actions a computer.
Sequence Pat O's and I's of Seight equipment to the conditionality of U because
1 cm 11 U= 51,2,3,4,5,6,7, 2,3,103
A= {3,43, B= 24, 689, C= 26,8, 109
then of (n) = {1, cuten n = 3, or 4
Thus.
for corresponds to sequence = 0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
de correspondo do coque co = 0,0,0,0,0,0,0,0,0,1.

Q.4 (b) Define the following term with suitable example.

Sol. (4)(b) (i) Bijection Mapping

eg. The mapping $f: Z \to Z$ f(x) = x + y f(x) = y f

Sol. (4)(b) (ii) One-One Mapping.

mapping of: A - B is said to be a are-one mapping of: A - B is said to be a are-one mapping if different element of A have different of inage in B. Thus:

Lifterent of image in B. Thus:

Lif

Sol. (4)(b) (iii) Onto Mapping.

-> 2 > Onto Mapping (or Surjective Mapping):
the mapping fi A - 1 B is such that each element of B is the finage of at least
one element of A, Then of es canda
ente mapping.
g let A = £1,2,3,43 and B = £1,4,9,163 and 2 f(n) = n2, fn EA, then f: A -> B
and anto function asovery comen
of B has a pre-image on A underf.