Rajasthan Institute of Technology and Management, Jaipur Mid-Term -II solution
 \author{ Subject - Analog Electronics

 Semester-4th

 Faculty- Green Maraiya

 Set-A

}

L CE short circuit current gain

For short circuit current gain and hence it will be assumed $R_{L}=0$ output S.C as result.
(1) gre is shorted and becomes zero.
(2) Since $r_{b} b^{\prime} \gg b^{\prime} e$ (therefore $g_{b c}^{\prime} \ll g_{b} b^{\prime} e$ hence $g_{b}^{\prime} c$ is neglected in comparison with gre

$$
\begin{equation*}
I_{L}=-g_{m} V_{b} e \tag{1}
\end{equation*}
$$

KCL at input side.

$$
\begin{align*}
& I_{i}=\frac{V b^{\prime} e}{1 / g_{b}^{\prime} e}+\frac{V_{b}^{\prime} e}{1} \\
& I_{i}=V_{b}^{\prime} e\left[g_{b}+c\right) \tag{2}\\
& \left.I_{e}^{\prime}+J w\left(C_{c}+C_{e}\right)\right]
\end{align*}
$$

current gain under short circuit

$$
A_{I}=\frac{I_{L}}{I_{i}}
$$

$$
\begin{align*}
& A_{I}=\frac{-g_{m} v_{b}^{\prime} e}{V_{b}^{\prime} c\left[g_{b}^{\prime} c+J \omega(c e+c c)\right]} \\
& A_{I}=\frac{-g_{m}}{g_{b}^{\prime} e+J w(c c+c)} \\
& \text { Lee' } \therefore g_{b e}^{\prime}=\frac{g_{m}}{h_{f e}} \\
& A_{I}=\frac{-g_{m}}{g_{b_{e}}^{\prime}\left[\frac{g_{0}}{G_{e}} 1+\frac{J \omega\left(c_{e}+c_{c}\right)}{g_{b} e}\right]} \\
& A_{I}=\frac{-g h}{\frac{g m}{h f e}\left[1+\frac{J \omega\left(c_{c}+c_{c}\right)}{g_{b} e}\right]} \\
& A_{I}=\frac{-h_{f e}}{1+\left[\frac{J \omega\left(c_{e}+c_{c}\right)}{g_{b} e}\right]}=\frac{-h f e}{1+\left[\begin{array}{ll}
J 2 \pi f\left(c+c_{c}\right) \\
g_{h^{\prime}}
\end{array}\right]} \\
& A_{I}=\frac{-h f e}{1+\lambda\left(\frac{f}{f \beta}\right)} \text { (4) } \\
& f_{\beta}=\frac{g_{b^{\prime} e}}{2 \pi\left(c_{e}+c_{c}\right)}=\frac{g_{m}}{n+e 2 \pi\left(c_{e}+c_{c}\right)} \\
& \left|A_{I}\right|=\frac{\text { hte }}{\sqrt{1+\left(\frac{1}{f_{B}}\right)^{2}}}
\end{align*}
$$

At $f=f \beta$

$$
A_{1}=\frac{h+e}{\sqrt{2}}
$$

β-cut- of frequency:
f_{β} is defined as the frequency at which CE S.C current gain falls $\frac{1}{\sqrt{2}}$ (or 0.707 or fall by 3 dB) of its 100 frequency current gain value i.e hie the value of f_{β} is

$$
f_{\beta}=\frac{g_{b}^{\prime} e}{2 \pi\left(c_{e}+c_{c}\right)}
$$

unity gain frequency $\left(f_{T}\right)$
Frequency f_{T} is defined as the frequency at which CE S.C current gain becomes unity.

$$
\begin{aligned}
& \text { nt } f=f T \\
& A I=1=\frac{h_{f e}}{\sqrt{1+\left(\frac{f T}{f \beta}\right)^{2}}} \quad \begin{array}{r}
\left(e^{+}\left(f_{\beta}\right)\right. \\
\frac{f T}{f \beta} \ggg^{1}
\end{array} \\
& 1=\frac{h f e}{\sqrt{\left(\frac{f T}{f \beta}\right)^{2}}} \\
& \frac{f T}{f \beta}=\text { hf } \\
& f_{1}=h \text { fe. } f_{\beta}
\end{aligned}
$$

fo represent the CE S.C current gein-bandwidth product.

$$
\begin{aligned}
& f_{T}=h_{f e} \cdot f_{\beta} \\
& f_{\beta}=\frac{f_{T}}{n_{f e}}
\end{aligned}
$$

from eg (5)

$$
\begin{aligned}
& \frac{f_{T}}{h_{H e}}=\frac{g_{m}}{\text { nfl } 2 \pi\left(c_{e}+c_{c}\right)} \\
& f_{T}=\frac{g_{m}}{2 \pi\left(c_{e}+c_{c}\right)} \quad c_{e+77} c_{c} \\
& f_{T}=\frac{g_{m}}{2 \pi c_{e}}
\end{aligned}
$$

current Gain versus frequency curve

Ques -1
Solution i)

$$
\begin{aligned}
g_{m}=\frac{I_{c}}{V_{T}} & =\frac{1 m A}{26 m A} \\
& =38.46 \mathrm{~mA} \mid V
\end{aligned}
$$

ii)

$$
\begin{aligned}
r_{b}^{\prime} e=\frac{n f e}{g_{m}} & =\frac{200}{38.46 \times 10^{-3}} \\
= & 5.20 \mathrm{k} \Omega
\end{aligned}
$$

iii)

$$
\begin{aligned}
(c e+c c) & =\frac{g m}{2 \pi f_{T}}=\frac{g m}{\omega T} \\
& =\frac{38.46 \times 10^{-3}}{500 \times 10^{6}} \\
c e+c_{c} & =76.92 \mathrm{PF} \\
c b_{e}^{\prime} & =c e_{e}=76.92 \mathrm{PF}-3 \mathrm{PF}=73.92 \mathrm{PF}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
f_{T} & =h_{f e} \cdot f_{\beta} \\
2 \pi f_{T} & =h_{f e} 2 \pi f_{\beta} . \\
w T & =h \text { fe } \omega \beta \\
w \beta & =\frac{w T}{h_{f e}}=\frac{500 \times 10^{6}}{200} \\
\omega \beta & =2.5 \mathrm{mred} / \mathrm{sec}
\end{aligned}
$$

Ques -2

Deable-luned Amplifies.
It Consist of a transistor amplifier containing two tensed circuit cone $\left(L_{1}, c_{1}\right)$ in the collector and the other $\left.c_{2} C_{2}\right)$ in the output. The high frequency signal to be amplified is applied to the input terminals of the amplifier. The resonant fregeconcy of tuned cireciutt $l_{1} L_{1}$) is made Equal to the signal frequency onder such condition the tend crecint offers very high impedance to the signal Aequerny, Consequently large output appears across the tuned circuit $L_{1} C_{1}$ the ciilput from this turned circuit is transfessed to the second tuned circuit $L_{2} C_{2}$ through mutual incluctonce. Double tuned cisunit are extensively used for coupling the various circuit of radio and television recieners.

Frequency response:- The frequency response of a doble tuned circuit depends upon the degree of coupling i.e upon the amount of mutual inductance bl the two tuned circuit when coil L_{2} is couple to L_{1} a portion of loud resistance is coupled into the primary tank $\mathrm{CK} L_{1} C_{1}$ and affect the primary cut in exally the some manner as though a resistor had

when che wits are spread aport, all the primary coil 4 fliest will not link the secondry $\operatorname{coil} l_{2}$ The coil are said to have loose copping. Under such condition the resistome reflected from the load (ie secondly craiil) is small. The resonome curve with be sharp and the circuit Q is high nomen primary and secondly coils are very chose together, they are said to hare tight coupling under such conditions, the reflected reesistame will be loge and the circuit Q is lower.

Bandwidth of double toured Circuit
BW increase with degree of coupling, determining factor in a double tuned circuit is not Q but the coupling for given frequoxy ; the lighter the coupling, the greater is BW.

$$
B \omega=k f_{r}
$$

$$
K=\text { coeffient of corysing. }
$$

Advantages of double turned Amplifier.
i) $B x$ is increased
2) Senstivity (ie ability to recieve wack signal) is increased 3) selectivity (ie " to discriminate against signal is adjacent band 5) is increased.

Stagger tuned: Amplified

If two or more tuned circuits are cascaded one tuned to the same frequency; thus the overall bandwidth decreases it is known as synchronous tuning.
If the tuned are cascaded and they are tuned to different frequencies it is possible to obtain increased bandwidth with more desirable bondpass chang. Cire flat pans band with ster sidles this technique is called stagger turning.

 number of slages are usen flatter whll be 11.0 pensoond and stocper will be the gain foll. of outkite lhe prawbond.

Anatysis the gain of lemed - xitigle amplitien is given if

$$
\frac{A V}{\left(A_{v} \text { at resorace }\right)}=\frac{1}{1+1520.5}=\frac{1}{115 x} \quad x=2 Q 8
$$

since one staige is furced ato the fery below fo and othen abane to the corkesponking selactivity is
$\left(\begin{array}{c}\text { Avatuscrate. }\end{array}\right)=\frac{1}{1+J(x-1)}-1$
An
$\frac{1}{1+0(x+1)}$

- (Avat seserace $\quad-1+5(x+1)$
$1 \times 2=\frac{1}{1+1(x-1)} \times \frac{1}{1+1(x+1)}=\frac{1}{2-x^{2}+23 x}$
$\left(\operatorname{gain} 1=\frac{1}{\sqrt{\left(2 x^{2}\right)^{2}+(2 x)^{2}}}=\frac{1}{\sqrt{4}+x^{4}}\right.$

$$
\left||g a i n| \cdot \frac{1}{\sqrt{4}+(2 \beta s)^{4}}=\frac{1}{2} \frac{1}{\sqrt{1+4 \theta^{4} s^{4}} \mid}\right.
$$

Ques -3
Draw the circuit diagram and Explain the operation with relevant waveforms of class- B push-pull amplifier. Also show that the maximum conversion efficiency of class- B push-pull amplifier is 78.5%

The $d c$ biasing point ice Q point is adjusted on the x-axis such that $V_{C L Q}=V C C$ and $I_{C Q}=0$
\rightarrow Hence ω-ordinates of the Q point are (Vcc;0)
De power imp
\rightarrow Each transistor OIP is in the form of half roctifical sincescid with a peak value of I_{m} or $I_{C(P)}$
\rightarrow Thus the average current in each transistor is $\frac{\text { in }}{\pi}$
\rightarrow since, there are two transistor, the $d c$ current drawn from the supplely vc, by both the tromistor is
$I d c=2 x$ (Average current in each transistor)

$$
I_{d} d c=\frac{2 \times I m}{\pi}
$$

\therefore The $D C$ il power

$$
\begin{aligned}
P_{i}(d c) & =v(c \cdot I d c \\
& =v c c \cdot\left(\frac{2 I n}{\pi}\right) \\
P_{i(d)} & =\frac{2}{\pi} \times v(c \cdot I m
\end{aligned}
$$

AC operation
The AC power is

$$
\begin{aligned}
P_{a c} & =V_{r m s} \cdot I_{r m s} \\
& =\frac{V_{m}}{\sqrt{2}} \cdot \frac{I_{m}}{\sqrt{2}} \\
P_{a c} & =\frac{V_{m} \cdot I_{m}}{2}
\end{aligned}
$$

$$
\begin{array}{lr}
P_{a c}=\frac{V_{m}}{2} \cdot \frac{V_{m}}{R_{L}^{\prime}} & \text { or } \\
P_{a c}=\frac{V_{m}^{2}}{2 R_{L}^{\prime}} & P_{a c}=I_{m} \cdot R_{L}^{\prime} \cdot \frac{I_{D}}{2}
\end{array}
$$

efficiency: -

$$
\begin{aligned}
\% \eta & =\frac{P_{a c}}{P_{d c}} \times 100 \\
& =\frac{\frac{V_{m} \cdot \Gamma_{m}}{2}}{V_{C c} \cdot \frac{2 I_{m}}{\pi}} \times 100 \\
& =\frac{V_{m}}{2} \times \frac{1}{\frac{2 V C l}{\pi}} \times 100 \\
\% \eta & =\frac{V_{m} \cdot \pi}{4 V_{C l}} \times 100
\end{aligned}
$$

Maximum efficiency:-
$v_{m}=V_{c c}$ - For max efficiency

$$
\begin{aligned}
\% \eta & =\frac{V_{m} \cdot \pi}{4 V C C} \times 100 \\
& =\frac{\left(V \max -V_{\min }\right) \times \pi}{4 V C C} \times 100 \\
\% \eta & =\frac{v e c \cdot \pi}{4 \text { vc }} \times 100 \\
\because x & =\frac{\pi}{4} \times 100=78.5 \%
\end{aligned}
$$

Ques -3
Solus $V_{c c}=10 \mathrm{~V} \quad R_{L}=16 \Omega$ overall $\eta=$ collector $\eta=0.5$

$$
P_{t r}=100 \mathrm{~mW}
$$

(i) output power $a \cdot c$

$$
\begin{gathered}
\text { collector efficiency }=\frac{\left(P_{0}\right)_{a c}}{P_{t r}} \\
0.5=\frac{\left(P_{0}\right)_{a c}}{100 \mathrm{~m} \mathrm{\omega}} \\
\left(P_{0}\right)_{a c}=0.5 \times 0.1=0.05 \text { watt. }
\end{gathered}
$$

(ii) output power $a c$ is given by

$$
\begin{aligned}
\left(P_{0}\right)_{a C} & =\frac{1}{2} V_{C C} \cdot I_{C Q} \\
0.05 & =\frac{1}{2} \times 10 \times S_{C Q} \\
0.05 & =5 \times I_{C a}^{2} \\
I_{C A} & =\frac{0.05}{5}=0.01 \mathrm{~A}
\end{aligned}
$$

(iii) Transformer turns ratio

$$
\begin{aligned}
& R_{L}^{\prime}=N^{2} R_{L} \\
& R_{L}^{\prime}=\frac{V C l}{I C Q}=\frac{10}{001}=1000 \Omega \\
& 1000=N^{2} \times R_{L} \\
& N=\sqrt{\frac{1000}{16}} \\
& N=8
\end{aligned}
$$

Ques-4(a)
The comparison b/w valtage and power Amplifics.

Classification of power Amplifier

- Clans-A power Amplifier

$$
\begin{aligned}
& \rightarrow \text { class- } B \\
& \rightarrow \text { class- } A B \\
& \rightarrow \text { class- } C \\
& \rightarrow \text { class -D }
\end{aligned}
$$

Class-A power power Amplition
\rightarrow collector current flows for entire 360° of $1 / 1 \mathrm{signal}$. conduction angle $=2 \pi$

$\rightarrow Q$ point is located at centre of de load line
Advantage:- Minimum distortion
\rightarrow Expellant thermal stability i.e, no thermal runaway problem.
Disadvantage:- small power conversion efficiency
Application:- Designing of audio fred amplifier.
\rightarrow In class -A operation, power dissipated by T_{x} is equal to mas signal power $O \mid P$.
For clew- $A, P_{D}=P_{0} \max$ ie max power opP.

Complementary symmetry Clas-B Amplifien.
(Common collector-Emitter follower)

(b)

\rightarrow In Complementary symmetry class $-B$ amplifier, one is $n \cdot n-p$ and the Q then is $p-n \cdot p$ transistor.
\rightarrow The transistor Q_{1} is $n \cdot p-n$ voile Q_{2} is $p-n-p$ type
\rightarrow The Circuit is driven from a dual supply of \pm vie
\rightarrow During the hay cycle of the ip signal, the tronsis to Q_{1}, will be biared into conduction, resulting in a half cycle signal across the load
\rightarrow During -ve half cycle of the ip p signal the $p-n-p$ transistor Q_{2} will be baled into conduction resulting in se half cycle across the load RL.
\rightarrow Thus For a complete cycle of it p a complete cycle of opP signal is obtained across the load.

Mathematical Analysis:
\rightarrow Ml the result derived for push-pull transformer coupled Clars-B amplifier are applicable to the complementary class-B amplifier.
\rightarrow The only change is that as the op tronsfomer is not present hexce in the Expression, R_{L} value must be used as it is instead of R_{1}^{\prime}
Arvontages:-
\rightarrow As the circuit is tronsformelens. its weight, sizes cost are lens \rightarrow Due to common collector configuration, impedance matching is possible.
\rightarrow The frequency reesponse improves due to tronsfomerlus clans-B amplifier cit.

> Rajasthan Institute of Technology and Management,Jaipur Mid-Term-II Solution Subject-Analog Electronics
> Semester-4th
> Faculty- Green Maraiya Set-B

Question-1
Hybrid -7 Model
$\sigma b b^{\prime}=$ ohmic base spreading resistance
re $=$ Early effect
$r b^{\prime} e=$ Forward function resistance
$\gamma b^{\prime} c=$ show early effect for I_{c} Junction (high)
$g_{m}=$ Trans conductance $g_{m}=\frac{\left|F_{c}\right|}{V T}$
$r b b^{\prime}$ - Base region of transistor is very thin compared to emitter \& collector region \& its resistance lies b/w 40 to 400Ω. The ohmic resistance of E and is usually of order of 10Ω and can be neglected in Comparision to that of base region.
ob'e - Incremental resistance of $\dot{F}-B$ diode which is $F B$ in active region.
$\gamma b^{\prime} c$ - It accounts for feedback from $O I P$ to ils due to base width modulation or early effect the value of rbi is usually very high (several Mil.) and will be neglected in analyses.
race:- IIP resitonce and it is also due to Early effect/
The hybrid Capacitance
Forward based PN Junction exhibits a capacitive effect called diffusion capacitance. This capacitive effect of normally forward baised bose-emutter Junction of transistor is represented by $c b^{\prime} c$ or ce in the nyblid-t model the diffusion capacitance $c e$ connected between B and E represents the Excess minority carrier storage in the base.

The reverse biased PN Junction exhibits a capacitive effect called trontion capacitance. The capacitive effect of normally reverse based collector base Junction of the transistor represented by $C b^{\prime} C$ or $C c$ in the nybrid- π model.

High frequency Response of Emitter follower

$$
\begin{aligned}
V_{B E} & =0.7 \text { for } \mathrm{si} \\
& =0.3 \text { for Ge }
\end{aligned}
$$

REL

$$
\begin{aligned}
& V_{B E}+V_{0}-V_{i}=0 \\
& V_{B E}-V_{i}=-V_{0} \\
& V_{0}=V_{i}-V_{B E}
\end{aligned}
$$

if $\quad v_{i}=40$

$$
\begin{aligned}
V_{0} & =40-0.7 \\
V_{0} & =39.3 \mathrm{~V} \text { For } \mathrm{si} \\
V_{0} & =40-0.3 \\
& =3907 \mathrm{~V} \text { For Le }
\end{aligned}
$$

so, $\quad v_{0} \cong v_{i}$

$$
\begin{gathered}
\text { gain }=\frac{v_{0}}{v_{1}^{i}}=A v \\
A_{v} \simeq 1
\end{gathered}
$$

The circuit of Emitter follower at high frequency is described using fig a capacitive C_{L} is included across the resister $R E$ because the Emitter follower due to its low OIP impedance is often used to drive capacitive load, Le resprents the shunt capacitance of capacitive load.

High frequency equivalent circuit.
Apply Miller's theorem to the hybrid π-model.

we know that, the freq of an emitter follower it very close to unit $\therefore \quad(A \cong 1)$

$$
\begin{aligned}
& V_{e}=I \times Z \\
& V_{e}=I \times\left(\frac{R_{L \times} \frac{1}{J w C_{L}}}{R_{L}+\frac{1}{J \omega C_{L}}}\right) \\
& V_{e}=g_{m} V_{b e} \times \frac{\times R_{L}}{\left(1+J \omega C_{L} R_{2}\right)} \\
& V_{e}=\frac{g_{m} \cdot R_{L}}{1+J w C_{L} R_{L}} \cdot V_{b e}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& v_{e}=\frac{g_{m} \cdot R_{L}}{1+J \omega_{L} R_{L}}\left(v_{i}^{\prime}-v_{e}\right) \\
& v_{e}=\frac{g_{m} \cdot R_{L} \cdot v_{1}^{\prime \prime}}{1+J W C_{L} R_{L}}-\frac{g_{m} \cdot R_{L} v_{e}}{1+J W C_{L} R_{L}} \\
& v e\left(1+\frac{g_{m} R_{L} B_{e}}{1+J W C_{L} R_{L}}\right)=\frac{g_{m} R_{L} \cdot V_{i}^{\prime}}{1+J w C_{L} R_{L}} \\
& v e\left(\frac{1+J w C_{L} R_{L}+g_{m} R_{L}}{1+J \omega C_{L} R_{L}^{\prime}}\right)=\frac{g_{m} \cdot R_{L} \cdot v_{1}^{\prime}}{1+J \omega_{L} C_{L} R_{L}} \\
& \frac{v e}{v_{1}^{\prime \prime}}=\frac{g_{m} R_{L}}{1+g_{m} R_{L}+J W L_{L} R_{L}} \\
& \frac{v_{0}}{v_{i}}=\frac{v_{e}}{v_{i}{ }^{\prime}}=\frac{g_{m} R_{L}}{\left(1+g_{m} R_{L}\right)\left[1+\left(\frac{J W Q_{L L}}{1+g_{m} R_{L}}\right)\right]} \\
& \frac{v_{0}}{V_{i}}=\frac{\frac{g_{m} R_{L}}{1+g_{m} R_{L}}}{1+\frac{J \omega C_{L} R_{L}}{1+g_{m} R_{L}}} \\
& \frac{V_{0}}{V_{i}}=\frac{g_{m} R_{L}}{1+g_{m} R_{L}} \times \frac{1}{1+{ }^{J}\left(\frac{f^{\prime}}{f_{H}}\right)} \\
& A_{0}=\frac{A_{0}}{1+J\left(\frac{f}{f_{H}}\right)} \\
& A_{0}=\frac{g_{n} R_{L}}{1+g_{m} R_{L}} \cong 1 \text { (Gain) }
\end{aligned}
$$

$$
f_{H}=\frac{1+g_{m} R_{L}}{2 \pi C_{L} R_{L}}
$$

Now, since the input inpedance between terminal B and c is very large in comparison (rs $R s$) so overall. voltage gain $A r s=\frac{v_{e}}{v_{i}}=\frac{\text { Ac }}{1+1\left(\frac{f}{f_{H}}\right)}$ $\mathrm{fH}_{\mathrm{H}} \rightarrow$ High cut-off freq

Ques-2

Trons former coupled cles-A power amplifies.

- prove that the maximum power efficiency is 50%

DC operation the winding resintaxes are zero ohms \rightarrow It is assumed that the wind ions primary of transformers W.k.t the slop of $d c$ load line is reciprocal of the $d c$.

Applying KNL to the collector CKL.

$$
V_{C C}-V_{C E}=0
$$

$$
\begin{aligned}
& V C C=V C E \\
& V C E Q=V C C \quad T h i s \text { is the dc co bias valtege } \\
& V I F a \text { for the transistor. }
\end{aligned}
$$ vela for the transistor.

- Hence the dc load line is a vertical straight line parsing through a vantage point on the x-axis which is $\mathrm{VCEG}=\mathrm{VC} C$

Simarly. the ac power elelived to the loced on sceondry Cou be calculated using secondry quoxlies.

Let $V_{2} m=$ peak value of vata becondy or load valtoge $I_{2 m}$ = peak value of secondyy or loeed current.

$$
\begin{aligned}
& P_{a c}=\frac{V_{2} m \cdot I_{2} m}{2} \\
& P_{a c}=\frac{\left(V_{\text {max }}-V_{m i n}\right) \cdot\left(1 \text { max }-I_{m i n}\right)}{8}
\end{aligned}
$$

Efticiency:-

$$
\begin{aligned}
& \eta=\frac{\frac{P a c}{P d c} \times 100}{\eta=} \frac{(\text { max }-v \min) \cdot(1 \operatorname{sox} x-\operatorname{tinin})}{8 \mathrm{VCC} \cdot I C Q} \times 100
\end{aligned}
$$

Ques-3
parallel resoname (porcticat bane (w)

- Circuit current is in phase with valtage applied.
\rightarrow phase ougle ϕ b/w current aud valkege is tero.
\rightarrow The Circcent is resistine in nature
\rightarrow power factor $(\cos \phi)=1$
Resonant frequency

$$
\begin{align*}
& X_{L}=2 \pi f L \text { (Inductive reactonc) } v \\
& x_{c}=\frac{1}{2 \pi f c} \text { (capacitive reactone) } \\
& Z_{1}=R+J \times L \\
& Y_{1}=\frac{1}{R+J X_{L}} \text { (admittollee) } \\
& =\frac{1}{R+J \times L} \times \frac{R-J \times L}{R-J \times L}=\frac{R-J \times L}{R^{2}+\times X_{L}^{2}} \\
& V_{1}=\frac{R}{R^{2}+X L^{2}}-\frac{J \times L}{R^{2}+\times L^{2}} \tag{1}\\
& z_{2}=-J x_{c} \\
& y_{2}=\frac{1}{-J x_{c}}=\frac{1}{x c}
\end{align*}
$$

Tatul admittance

$$
y_{T}=y_{1}+1 / 2
$$

$$
\begin{aligned}
& =\frac{P}{k^{2}+x_{L}^{2}}-\frac{j x L}{k^{2}+x_{L}^{2}}+\frac{J}{x C} \\
F & =\frac{f}{R^{2}+x_{L}^{2}}+j\left(\frac{1}{x C}-\frac{x_{L}}{k^{2}+x_{L}^{2}}\right)
\end{aligned}
$$

A. Visersme
imariong past of y_{T} is zere

Evramic recistonce
At resoriame

$$
\begin{aligned}
K_{T} & =\frac{R^{2}}{R^{2}+x_{L}^{2}} \\
\underline{R_{D}} & =\frac{1}{y_{T}}=\frac{R^{2}+x_{L}^{2}}{R} \\
z_{\gamma} & =\frac{z_{L}^{2}}{R} \\
z_{\gamma} & =\frac{4 C}{R}
\end{aligned}
$$

$$
Z_{r}=\frac{L}{C R} \text { opramic resistome }
$$

$$
\begin{aligned}
& x_{i}=\frac{i^{k}}{k=x_{t}^{2}} \\
& \frac{1}{x_{C}}-\frac{x L}{R^{2}+x_{2}^{2}}=0 \\
& \frac{x_{L}}{C^{2}-x_{L}^{2}}=\frac{1}{x_{C}} \quad \Rightarrow \quad x_{L} x_{C}=R^{2}+x_{L}^{2} \\
& \dot{q}^{-1} f\left(\frac{1}{2+t r c}=R^{2}+(2 \pi f r l)^{2}\right. \\
& \frac{L}{C}=R^{2}+4 \pi^{2} f_{r}^{2} L^{2} \\
& \frac{L}{c}-R^{2}=\left(4 \pi^{2} L^{2}\right) \cdot f_{r}^{2}- \\
& i_{r}=\frac{1}{2 \pi L} \sqrt{\frac{L}{C}-R^{2}} \\
& f_{r}=\frac{1}{2 \pi} \sqrt{\frac{L}{C \times L^{2}}-R^{2}} \\
& f_{r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}
\end{aligned}
$$

At paraller resonanel
\rightarrow Admittonce decrease.ie impedonce pes.
\rightarrow current decrease.
\rightarrow This Ckt is regector circuit.

Ideal tanch Cut

$$
\begin{aligned}
& y_{T}=y_{L}+y_{C} \\
& \theta \quad 1 \\
& z_{L}=J x_{L} \quad ; \quad z_{C}=\frac{1}{y_{C}-J x_{C}} \\
& y_{L}=\frac{1}{J x_{L}} \quad y_{L}=\frac{J}{x_{C}} \\
& y_{T}=J\left[\frac{1}{x_{C}}-\frac{1}{X_{L}}\right]
\end{aligned}
$$

At resononce

$$
\begin{aligned}
\frac{1}{x_{c}}-\frac{1}{x_{L}} & =0 \\
\frac{1}{x_{c}} & =\frac{1}{x_{L}} \quad \Rightarrow \quad f_{L} \\
x_{L} & =x_{c} \\
2 \pi f_{r} L & =\frac{1}{2 \pi f_{r c} c} \\
& f_{r}{ }^{2}=\frac{1}{(2 A)^{2} L c} \\
& =\frac{1}{2 \pi \sqrt{L C}}
\end{aligned}
$$

Ques -4
Solution is

$$
\begin{aligned}
g_{m}=\frac{I_{c}}{V_{1}} & =\frac{1 m A}{26 m A} \\
& =38.46 \mathrm{~mA} \mid \mathrm{V}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\gamma_{b e}^{\prime}=\frac{\text { hfe }}{g_{m}} & =\frac{200}{2846 \times 10^{-3}} \\
= & 5.20 \mathrm{k} \Omega
\end{aligned}
$$

iii)

$$
\begin{aligned}
(c e+c c) & =\frac{g m}{2 \pi f_{T}}=\frac{g m}{\omega T} \\
& =\frac{38.46 \times 10^{-3}}{500 \times 10^{6}} \\
C e+c c & =76.92 \mathrm{PF} \\
C b_{e}^{\prime} e & =C e=76.92 \mathrm{PF}-3 \mathrm{PF}=73.92 \mathrm{PF}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
f_{T} & =h_{f e} \cdot f_{\beta} \\
2 \pi f_{T} & =h_{f e} 2 \pi f_{\beta} . \\
\omega T & =h_{f e} \omega \beta \\
\omega \beta & =\frac{\omega T}{h_{f e}}=\frac{500 \times 10^{6}}{200} \\
\omega \beta & =2.5 \mathrm{~m} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Power Amplifies
Green thataiyn
M. tech Nit Rowiked.
ph -9981533280
\rightarrow It is last stage of multistage Amplifier
\rightarrow power Amplifier is defined as ability of amplifier to convert available $0 \mid P d c$ power into ac signal power with the amplification of ip p signal.
\rightarrow Transistor used in power Amplifier cue called, troxumitor
\rightarrow power Amplifier are designed mostly by BJT \& they are generally in CE mode.

Small signal Amplifies
\rightarrow ip signal amplitude ore very small (rv or mv)
\rightarrow operate only in linear region

* Important specification $A I_{1} A v, R_{i}$ R_{0}, ϕ
\rightarrow Analysis amp will be done using graphical as well as mathematical.
large Signal Amplifin
i lp signal amplitude are very nigh $(7, v)$
\rightarrow operate only both in linear and Non-linear region of ill chore. Curve.
* Important specification are:
\rightarrow power conversion efficiency n
$\rightarrow D C$ power available at ole P
\rightarrow By only graphical analysis.

The comparison b/w valtege and power Amplifier

Classification of power Amplifier

- Clans-A power Amplifier

$$
\begin{aligned}
& \rightarrow \text { class- } B \\
& \rightarrow \text { class- } A B \\
& \rightarrow \text { class- } C \\
& \rightarrow \text { class -D }
\end{aligned}
$$

Class-A power power Amplition
\rightarrow collector current flows for entire 360° of $1 / 1 \mathrm{signal}$. conduction angle $=2 \pi$

$\rightarrow Q$ point is located at centre of de load line
Advantage:- Minimum distortion
\rightarrow Expellant thermal stability i.e, no thermal runaway problem.
Disadvantage:- small power conversion efficiency
Application:- Designing of audio fred amplifier.
\rightarrow In class -A operation, power dissipated by T_{x} is equal to mas signal power $O \mid P$.
For clew- $A, P_{D}=P_{0} \max$ ie max power opP.

Class-B operation:-
\rightarrow collector current flows Exactly for 180° of ip signal
\rightarrow Q point is located at cut-off.
\rightarrow It is double ended amplifier i.e two transistor in one stage

Advantage:- Higher efficiency (78.5%)

Power chain is eliminated
Disadvantage:- Higher distortion
\rightarrow Introduce crossover distortion.

Power dissipated nay single ix incur.

$$
P_{D}=0.2 P_{0} \mathrm{max}
$$

Power dissipated by circuit ie $2 \hat{x}$

$$
P_{D}=0.4 \ln \max
$$

For e.g: Jo design a class- B amplifiers with $20001 P$ signal power, Tx must dissipate som of Pow.

Class-AB power Amplifier:-

- Conduction angle $180^{\circ}<\phi<360^{\circ}$
\rightarrow a point is located in alive region but close to cut-offregion
\rightarrow Distortion \& Noise interference is more as compared to Class- A \& less then compared to class B.

- lans-c power Amplifies
\rightarrow Conduction Angle $<180^{\circ}$

