[image: image1.png]¥

RAJASTHAN INSTITUTE OF 2% e
=} R ET‘ ENGINEERING & TECHNOLOGY *

 SET-A
 IInd Year MCA. IVth Semester IInd Mid-Term Examination, April – 2018
 Subject: - Software Engineering
 Time: - 2 Hrs.

[Maximum Marks: 20]

[Min. Passing Marks: 08]

 Instructions to Candidates: -

 Attempt all questions. Marks of questions are indicated against each section.
Q. 1 Answer the following question in 1-2 lines. (1x5=5)

 i) Define the term ‘Software Project Planning’.
 Ans:- The Project Planning tasks ensure that various elements of the Project are coordinated

 and therefore guide the project execution.

 ii) What is testing?
 Ans:- It is a systematic process of spotting and fixing the number of bugs, or defects, in a

 piece of software so that the software is behaving as expected

 iii) What is UML?
 Ans:- UML is a unified modeling language that use graphical notation for representation.
 iv) Define Static Single variable Model.
 Ans:- Resources = c1 * (Estimated Characteristics)C 2 where the resources could be effort,

 project duration, staff size or requisite lines of software documentation. The constants

 c1 and c2 are derived from data collected from past projects

 v) What is size estimation model?
 Ans:- Program size is a measure of the effort and time required to develop the product –

 Two prevalent metrics in use are • Lines of Code • Function Points

Q. 2 Answer the following questions in 50 words each.
(2x2=4)

 i) Explain object-oriented principal.
 Ans:- Objects and Classes:- Object An object is a real-world element in an object–oriented environment that may have a physical or a conceptual existence. Each object has − Objects can be modelled according to the needs of the application. An object may have a physical existence, like a customer, a car, etc.; or an intangible conceptual existence, like a project, a process, etc. Class A class represents a collection of objects having same characteristic properties that exhibit common behavior. It gives the blueprint or description of the objects that can be created from it. Creation of an object as a member of a class is called instantiation.

Encapsulation :- Encapsulation is the process of binding both attributes and methods together within a class. Through encapsulation, the internal details of a class can be hidden from outside Data Hiding:- Typically, a class is designed such that its data (attributes) can be accessed only by its class methods and insulated from direct outside access. This process of insulating an object’s data is called data hiding or information hiding.

Message Passing :- Any application requires a number of objects interacting in a harmonious manner. Objects in a system may communicate with each other using message passing. Suppose a system has two objects: obj1 and obj2. The object obj1 sends a message to object obj2, if obj1 wants obj2 to execute one of its methods.

Inheritance :- It is the mechanism that permits new classes to be created out of existing classes by extending and refining its capabilities. The existing classes are called the base classes/parent classes/super-classes, and the new classes are called the derived classes/child classes/subclasses. Types of Inheritance

· Single Inheritance − A subclass derives from a single super-class.

· Multiple Inheritance − A subclass derives from more than one super-classes.

· Multilevel Inheritance − A subclass derives from a super-class which in turn is derived from another class and so on.

· Hierarchical Inheritance − A class has a number of subclasses each of which may have subsequent subclasses, continuing for a number of levels, so as to form a tree structure.

· Hybrid Inheritance − A combination of multiple and multilevel inheritance so as to form a lattice structure.[image: image2]
Polymorphism :-It is originally a Greek word that means the ability to take multiple forms. In object-oriented paradigm, polymorphism implies using operations in different ways, depending upon the instance they are operating upon.

 ii) Difference between Black box & White box testing.
 Ans:-

	Criteria
	Black Box Testing
	White Box Testing

	Definition
	It is a testing method in which the internal structure/ design/ implementation of the item being tested is NOT known to the tester
	It is a testing method in which the internal structure/ design/ implementation of the item being tested is known to the tester.

	Levels Applicable To
	Mainly applicable to higher levels of testing:Acceptance Testing System Testing
	Mainly applicable to lower levels of testing:Unit Testing ,IntegrationTesting

	Responsibility
	Generally, independent Software Testers
	Generally, Software Developers

	 Progr. Know.
	Not Required
	Required

	Implementation Knowledge
	Not Required
	Required

	 Test Cases
	Requirement Specifications
	Detail Design

 Q. 3 Answer the following questions in 100 words each.
(3x2=6)

 i) Explain RMMM.
 Ans:- RMMM :- RMM stands for risk mitigation, monitoring and management.There are three issues in strategy for handling the risk is

1. Risk Avoidance 2. Risk Monitoring 3. Risk Management

Risk Mitigation
Risk mitigation means preventing the risk to occur (risk avoidance). Following are the steps to be taken for mitigating the risks.

1. Communicate with the concerned staff to find of probable risk.

2. Find out and eliminate all those causes that can create risk before the project starts.

3. Develop a policy in an organization which will help to continue the project even through same staff leaves the organization.

4. Everybody in the project team should be acquainted with the current development activity

5. Maintain the corresponding documents in timely manner

6. Conduct timely reviews in order to speed up work.

7. For conducting every critical activity during software development, provide the additional staff if required.

Risk Monitoring
In Risk Monitoring process following thing must be monitored by the project manager.

1. The approach and behaviour of the team member as pressure of project varies.

2. The degree in which the team performs with the spirit of “Team-Work”.

3. The type of cooperation between the team members.

4. The type of problem occur in team member.

5. Availability of jobs within and outside of the organization.

Risk Management :-Project manager performs this task when risk becomes a reality. If project manager is successful in applying the project mitigation effectively then it becomes very much easy to manage the risks. For example, Consider a scenario that many people are leaving the organization then if sufficient additional staff is available, if current development activity is known to everybody in the team, if latest and systematic documentation is available then any ‘new comer’ can easily understand current development activity. This will ultimately help in continuing the work without any interval.
 ii) Explain Activity diagram with Example.
Ans:- Activity Diagrams describe how activities are coordinated to provide a service which can be at different levels of abstraction. Typically, an event needs to be achieved by some operations, particularly where the operation is intended to achieve a number of different things that require coordination, or how the events in a single use case relate to one another, in particular, use cases where activities may overlap and require coordination. It is also suitable for modeling how a collection of use cases coordinate to represent business workflows

1. Identify candidate use cases, through the examination of business workflows

2. Identify pre- and post-conditions (the context) for use cases

3. Model workflows between/within use cases

4. Model complex workflows in operations on objects

5. Model in detail complex activities in a high level activity Diagram

 Q. 3 Answer the following questions in 150 words. (5x1=5)

Explain Software Testing Strategies.

Ans:- Testing itself may be defined at various levels of SDLC. The testing process runs parallel to software development. Before jumping on the next stage, a stage is tested, validated and verified.

Unit Testing :- While coding, the programmer performs some tests on that unit of program to know if it is error free. Testing is performed under white-box testing approach. Unit testing helps developers decide that individual units of the program are working as per requirement and are error free.

Integration Testing :- Even if the units of software are working fine individually, there is a need to find out if the units if integrated together would also work without errors. For example, argument passing and data updation etc.

System Testing :- The software is compiled as product and then it is tested as a whole. This can be accomplished using one or more of the following tests:

 Functionality testing - Tests all functionalities of the software against the requirement.

 Performance testing - This test proves how efficient the software is. It tests the effectiveness and average time taken by the software to do desired task. Performance testing is done by means of load testing and stress testing where the software is put under high user and data load under various environment conditions.

 Security & Portability - These tests are done when the software is meant to work on various platforms and accessed by number of persons.

Acceptance Testing

When the software is ready to hand over to the customer it has to go through last phase of testing where it is tested for user-interaction and response. This is important because even if the software matches all user requirements and if user does not like the way it appears or works, it may be rejected.

Alpha testing - The team of developer themselves perform alpha testing by using the system as if it is being used in work environment. They try to find out how user would react to some action in software and how the system should respond to inputs.

Beta testing - After the software is tested internally, it is handed over to the users to use it under their production environment only for testing purpose. This is not as yet the delivered product. Developers expect that users at this stage will bring minute problems, which were skipped to attend.

Regression Testing

Whenever a software product is updated with new code, feature or functionality, it is tested thoroughly to detect if there is any negative impact of the added code. This is known as regression testing.

 OR

 Explain software Design process & principal.
 Ans:- During the design process the software requirements model (data, function, behavior) is transformed into design models that describe the details of the data structures, system architecture, interfaces, and components necessary to implement the system.

1.Software design should correspond to the analysis model: Often a design element corresponds to many requirements, therefore, we must know how the design model satisfies all the requirements represented by the analysis model.
2.Choose the right programming paradigm: A programming paradigm describes the structure of the software system. Depending on the nature and type of application, different programming paradigms such as procedure oriented, object-oriented, and prototyping paradigms can be used. The paradigm should be chosen keeping constraints in mind such as time, availability of resources and nature of user's requirements.
3.Software design should be uniform and integrated: Software design is considered uniform and integrated, if the interfaces are properly defined among the design components.
4.Software design should be flexible: Software design should be flexible enough to adapt changes easily.
5.Software design should ensure minimal conceptual (semantic) errors: The design team must ensure that major conceptual errors of design such as ambiguousness and inconsistency are addressed in advance before dealing with the syntactical errors present in the design model.
6.Software design should be structured to degrade gently: Software should be designed to handle unusual changes and circumstances, and if the need arises for termination, it must do so in a proper manner so that functionality of the software is not affected.

7.Software design should represent correspondence between the software and real-world problem: The software design should be structured in such away that it always relates with the real-world problem.
8.Software reuse: Software engineers believe on the phrase: 'do not reinvent the wheel'. Therefore, software components should be designed in such a waythat they can be effectively reused to increase the productivity.
10.Designing for testability: first the software is developed (designed and implemented) and then handed over to the testers who determine whether the software is fit for distribution and subsequent use by the customer.
11.Prototyping: Prototyping should be used when the requirements are not completely defined in the beginning. The user interacts with the developer to expand and refine the requirements as the development proceeds. Using prototyping, a quick 'mock-up' of the system can be developed

[image: image3.png]¥

RAJASTHAN INSTITUTE OF 2% e
=} R ET‘ ENGINEERING & TECHNOLOGY *

 SET-B
 IInd Year MCA. IVth Semester IInd Mid-Term Examination, April – 2018
 Subject: - Software Engineering
 Time: - 2 Hrs.

[Maximum Marks: 20]

[Min. Passing Marks: 08]

 Instructions to Candidates: -

 Attempt all questions. Marks of questions are indicated against each section.

Q. 1 Answer the following question in 1-2 lines. (1x5=5)

 i) Define the term ‘Project Scheduling’.

 Ans:- Project scheduling is the process of deciding how the work in a project will be
 organized as separate tasks, and when and how these tasks will be executed.
 ii) What is Risk identification?

 Ans:- You should identify possible type of risk like as project, product, and business risks.
 iii) Define diagram in UML.
 Ans:- UML diagrams are the ultimate output of the entire discussion. All the elements,
 relationships are used to make a complete UML diagram and the diagram represents
 a system.
 iv) Define static multi variable model.

 Ans:- Resources = c21e1+ c22e2+… where e1 is the ith software characteristics and c21 ,

 c22 are empirically derived constants for the ith characteristics
 v) What is Design Process?

 Ans:- In the design process the software requirements model (data, function, behavior) is
 transformed into design models that describe the details of the data structures, system
 architecture, interfaces, and components necessary to implement the system.

Q. 2 Answer the following questions in 50 words each.
(2x2=4)

 i) Explain Type of Relationship in UML.

 Ans:- Relationships :- Relationship is another most important building block of UML.
 It shows how the elements are associated with each other and this association describes
 the functionality of an application. There are four kinds of relationships available.
 1. Dependency:- Dependency is a relationship between two things in which change in one
 element also affects the other.
 2. Association :- Association is basically a set of links that connects the elements of a UML
 model. It also describes how many objects are taking part in that relationship.
 3. Generalization :- Generalization can be defined as a relationship which connects a
 specialized element with a generalized element. It basically describes the inheritance
 relationship in the world of objects.
 4. Realization Realization can be defined as a relationship in which two elements are
 connected. One element describes some responsibility, which is not implemented and the
 other one implements them. This relationship exists in case of interfaces.
 ii) Difference Between Verification & Validation.
Ans:- Validation is the process of checking whether the specification captures the customer’s needs. “Did I build what I said I would?”
Verification is the process of checking that the software meets the specification. “Did I build what I need?”
	 Verification
	 Validation

	1. Verification is a static practice of verifying documents, design, code and program.
	1. Validation is a dynamic mechanism of validating and testing the actual product.

	2. It does not involve executing the code.
	2. It always involves executing the code.

	3. It is human based checking of documents and files.
	3. It is computer based execution of program.

	4. Verification uses methods like inspections, reviews, walkthroughs, and Desk-checking etc.
	4. Validation uses methods like black box (functional) testing, gray box testing, and white box (structural) testing etc.

	5. Verification is to check whether the software conforms to specifications.
	5. Validation is to check whether software meets the customer expectations and requirements.

	6. It can catch errors that validation cannot catch. It is low level exercise.
	6. It can catch errors that verification cannot catch. It is High Level Exercise.

	7. Target is requirements specification, application and software architecture, high level, complete design, and database design etc.
	7. Target is actual product-a unit, a module, a bent of integrated modules, and effective final product.

	8. Verification is done by QA team to ensure that the software is as per the specifications in the SRS document.
	8. Validation is carried out with the involvement of testing team.

	9. It generally comes first-done before validation.
	9. It generally follows after verification.

Q. 3 Answer the following questions in 100 words each.
(3x2=6)

 i) Explain Object-oriented Metrics .
Ans:- List of software engineering metrics for object oriented environment derived by are as follows –

(1)
Methods per class,

(2)
Inheritance dependencies,

(3)
Degree of coupling between objects,

(4)
Degree of cohesion of objects,

(5)
Object library effectiveness,

(6)
Factoring effectiveness,

(7)
Degree of reuse of inheritance methods,

(8)
Average method complexity,

(9)
Application granularity.
 ii) Explain State diagram with example.

 Ans:- State Machine Notation State machine describes the different states of a component
 in its life cycle. The notations are described in the following diagram. It is used to
 describe different states of a system component. The state can be active, idle, or any

 other depending upon the situation.
 Following are the main purposes of using Statechart diagrams −

· To model the dynamic aspect of a system.

· To model the life time of a reactive system.

· To describe different states of an object during its life time.

· Define a state machine to model the states of an object.

Q. 3 Answer the following questions in 150 words. (5x1=5)

Explain COCOMO Model.

 Ans:- COCOMO model is used for Cost estimation and developed by Boehm. This model also estimates the total effort in terms of person-months of the technical project staff. The Effort Estimate includes development, management, and support tasks but does not include the cost of the secretarial and other staff that might be needed in an organization.
The basic steps in this model are : 1. Obtain an initial estimate of the development effort from estimate of thousands of delivered lines of source code (KDLOC).
2. Determine a set of 15 multiplying factors from different attributes of the project.
3. Calculated the effort estimate by multiplying the initial estimate with all the multiplying factors i.e. multiply the values in step 1 and step 2.
 The initial estimate (also called nominal estimate) is determined by an equation of the form used in the static single variable models, using KDLOC as the measure of size. To determine the initial effort Ei in person-months the equation used is of the type is shown below Ei = a * (KDLOC)b .
The value of the constants a and b depend on the project type.
In COCOMO, projects are categorized into three types –
1. Organic 2. Semidetached 3. Embedded.

 1. Organic projects are in an area in which the organization has considerable experience and requirements are not difficult to find out. Such systems are usually developed by a small team. Example of this type of project are simple business systems, simple inventory management systems, and data processing systems.
2. Projects of the embedded type are ambitious and novel; the organization has little experience and it is difficult to find out requirements. These systems have tight constraints from the environment (software, hardware, and people). Examples are embedded avionics systems and real-time command systems.
3. The semidetached systems fall between these two types. Semidetached project in which analyst know not all but much of requirement and have little experience of developing. Examples of semidetached system include developing a new operating system (OS), a database management system (DBMS), and complex inventory management system.
The constants a and b for different systems are given in table. There are 15 different attributes, called cost driver attributes, that determine the multiplying factors.
 Table A : Constants for different project types Project Type Nominal effort Constant Schedule Constant a b c d
 Organic 3.2 1.05 2.5 0.38
 Semidetached 3.0 1.12 2.5 0.35
 Embedded 2.8 1.20 2.5 0.32
Effort Adjustment Factor (EAF). EAF : E = EAF * Ei
total duration D = 4.1 x E.36
 OR

 Explain Software project planning Techniques.
 Ans:- Project plan structure 1. Introduction. This briefly describes the objectives of the project and sets out the constraints (e.g., budget, time, etc.) that affect the management of the project.
 2. Project organization. This describes the way in which the development team is organized, the people involved, and their roles in the team.
3. Risk analysis. This describes possible project risks, the likelihood of these risks arising, and the risk reduction strategies that are proposed.
4. Hardware and software resource requirements. This specifies the hardware and support software required to carry out the development. If hardware has to be bought, estimates of the prices and the delivery schedule may be included.
5. Work breakdown. This sets out the breakdown of the project into activities and identifies the milestones and deliverables associated with each activity. Milestones are key stages in the project where progress can be assessed; deliverables are work products that are delivered to the customer.
6. Project schedule. This shows the dependencies between activities, the estimated time required to reach each milestone, and the allocation of people to activities.
7. Monitoring and reporting mechanisms. This defines the management reports that should be produced, when these should be produced, and the project monitoring mechanisms to be used.

