Session: 2018-19

B.Tech II Year (III Semester) Mechanical Engineering Engineering Mechanics (3ME3-04)
 SET-A

Time: 2 hrs.

Instruction for students:

1. No provision for supplementary answer book.
2. Question paper contains three sections. Sec A includes 5 Short answers type questions (upto 25 words) Sec B- contains 06 Questions out of which any 04 questions to be attempt by the student (Analytical/Problem solving questions.).Sec C- contains 03 Questions out of which any 02 questions to be attempt by the student (Descriptive /Design questions.)

$$
\text { Sec-A } \quad\left(5^{*} 1=5 \text { Marks }\right)
$$

Q. 1 State the law of Parallelogram of forces with neat sketch.
Q. 2 State the Lami's Theorem with neat sketch
Q. 3 State the Theorem of Parallel axis
Q. 4 Differentiate between Angle of Friction and coefficient of friction
Q. 5 Define velocity ratio of lifting Machine

Sec-B(4*2=8 Marks)

Q. 1 Four forces equal to $\mathrm{P}, 2 \mathrm{P}, 3 \mathrm{P}$ and 4P are respectively acting along the four sides of square ABCD taken in order. Find the magnitude, direction and position of the resultant force.
Q. 2 Find the centre of gravity of a $100 \mathrm{~mm} \times 150 \mathrm{~mm} \times 30 \mathrm{~mm}$ T-section.
Q. 3 Enlist the the laws of static friction

Q. 4 Explain Differential wheel and axle with neat sketch and write down its Velocity ratio.
Q. 5 Describe Second system of pulleys (having six Pulley)with neat sketch.
Q. 6 In a certain weight lifting machine, a weight of 1 kN is lifted by an effort of 25 N . While the weight moves up by 100 mm , the point of application of effort moves by 8 m . Find mechanical advantage, velocity ratio and efficiency of the machine.

$$
\text { Sec-C }(2 * 3.5=7 \text { Marks })
$$

Q. 1 A particle is acted upon by the following forces.
(i) 20 N inclined at 30° towards North of East,(ii) 25 N towards North,(iii) 30 N towards North West, and(iv) 35 N inclined at 40° towards South of West.Find the magnitude and direction of the resultant force.
Q. 2 Derive the Moment of Inertia of a rectangular section is $\frac{b d^{3}}{12}$
Q. 3 A uniform ladder of length 3.25 m and weighing 250 N is placed against a smooth vertical wall with its lower end 1.25 m from the wall. The coefficient of friction between the ladder and floor is 0.3 . What is the frictional force acting on the ladder at the point of contact between the ladder andthe floor? Show that the ladder will remain in equilibrium in this position

I Mid Term examination
Session: 2018-19

B.Tech II Year (III Semester) Mechanical Engineering Engineering Mechanics (3ME3-04)
 SET- B

M.M.:20

Time: 2 hrs.

Instruction for students:

1. No provision for supplementary answer book.
2. Question paper contains three sections. Sec A includes 5 Short answers type questions (upto 25 words) Sec B- contains 06 Questions out of which any 04 questions to be attempt by the student (Analytical/Problem solving questions.).Sec C- contains 03 Questions out of which any 02 questions to be attempt by the student (Descriptive /Design questions.)

Sec-A

($5^{*} 1=5$ Marks)
Q. 1 State the polygon law of forces with neat sketch.
Q. 2 State the Lami's Theorem with neat sketch
Q. 3 State the theorem of Perpendicular Axis
Q. 4 State the Varignon's principle of moments or law of moment
Q. 5 State the Law of Machine

Sec-B(4*2=8 Marks)
Q. 1 State and prove the law of Parallelogram of forces with neat sketch.
Q. 2 Find the centre of gravity of a channel section $100 \mathrm{~mm} \times 50 \mathrm{~mm} \times 15 \mathrm{~mm}$.

Q. 3 In a certain weight lifting machine, a weight of 1 kN is lifted by an effort of 25 N . While the weight moves up by 100 mm , the point of application of effort moves by 8 m . Find mechanical advantage, velocity ratio and efficiency of the machine.
Q. 4 Enlist the the laws of Dynamic friction
Q. 5 Explain Single purchase crab winch with neat sketch and write down its Velocity ratio.
Q. 6 Find the length of belt(in open system)necessary to drive a pulley of 500 mm diameter running parallel at a distance of 12 meters from the driving pulley of diameter 1600 mm .

Sec-C(2*3.5=7 Marks)

Q .1 An electric light fixture weighting 15 N hangs from a point C , by two strings AC and BC . The string AC is inclined at 60° to the horizontal and BC at 45° to the horizontal Using Lami's theorem, determine the forces in the strings AC and BC

Q. 2 The truss ABC has a span of 5 metres. It is carrying aload of 10 kN at its apex. Find the forces in the members AB, AC and BC
Q. 3 Drive the Moment of Inertia of a circular section if $\frac{\pi}{64}(d)^{4}$

