Sec-A

Q.1 Explain the usage of stack in recursive algorithm implementation?
In recursive algorithms, stack data structures is used to store the return address when a recursive call is encountered and also to store the values of all the parameters essential to the current state of the procedure.

Q.2 List out Applications of queue
 Operating systems often maintain a queue of processes that are ready to execute or that are waiting for a particular event to occur.
Computer systems must often provide a “h processes, two programs, or even two systems. This holding area is usually called a “buffer” and is often implemented as a queue.

Q.3 What are applications of stack?
Conversion of expression
 Evaluation of expression
 Parentheses matching
 Recursion
Q.4 Define double circularly linked list?
In a doubly linked list, if the last node or pointer of the list, point to the first element of the list, then it is a circularly linked list.

Q.5 How to implement stack using singly linked list

 Stack is an Last In First Out (LIFO) data structure. Here , elements are inserted from one end called push operation and the same elements are deleted from the same end called pop operation
 So, using singly linked list stack operations are performed in the front or other way ew can perform rear end also.
											
 Sec-B (4*2.5=10 Marks)
Q.1 Define Bubble sort. Explain with example and algorithm.
 Bubble sort is the one of the easiest sorting method. In this method each data item is compared with its neighbor and if it is an descending sorting , then the bigger number is moved to the top of all
The smaller numbers are slowly moved to the bottom position, hence it is also called as the exchange sort.
take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're keeping it short and precise.
[image: Bubble Sort]
Bubble sort starts with very first two elements, comparing them to check which one is greater.
[image: Bubble Sort]
In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33 with 27.
[image: Bubble Sort]
We find that 27 is smaller than 33 and these two values must be swapped.
[image: Bubble Sort]
The new array should look like this −
[image: Bubble Sort]
Next we compare 33 and 35. We find that both are in already sorted positions.
[image: Bubble Sort]
Then we move to the next two values, 35 and 10.
[image: Bubble Sort]
We know then that 10 is smaller 35. Hence they are not sorted.
[image: Bubble Sort]
We swap these values. We find that we have reached the end of the array. After one iteration, the array should look like this −
[image: Bubble Sort]
To be precise, we are now showing how an array should look like after each iteration. After the second iteration, it should look like this −
[image: Bubble Sort]
Notice that after each iteration, at least one value moves at the end.
[image: Bubble Sort]
And when there's no swap required, bubble sorts learns that an array is completely sorted.
[image: Bubble Sort]
Now we should look into some practical aspects of bubble sort.
Algorithm
We assume list is an array of n elements. We further assume that swap function swaps the values of the given array elements.
begin BubbleSort(list)

 for all elements of list
 if list[i] > list[i+1]
 swap(list[i], list[i+1])
 end if
 end for

 return list

Q.2 Define merge sort with taking any example.
Merge sort is based on divide and conquer method. It takes the list to be stored and divide it in half to create two unsorted lists.The two unsorted lists are then sorted and merge to get a sorted list
[image: ../_images/mergesortB.png]

Q.3 how to implement queue using stacks.
Method 1 (By making enQueue operation costly) This method makes sure that oldest entered element is always at the top of stack 1, so that deQueue operation just pops from stack1. To put the element at top of stack1, stack2 is used.
Method 2 (By making deQueue operation costly)In this method, in en-queue operation, the new element is entered at the top of stack1. In de-queue operation, if stack2 is empty then all the elements are moved to stack2 and finally top of stack2 is returned.

Q.4 Mention the various types of searching techniques in C.
Linear search:
A simple approach is to do linear search, i.e
· Start from the leftmost element of arr[] and one by one compare x with each element of arr[]
· If x matches with an element, return the index.
· If x doesn’t match with any of elements, return -1.
Binary search
Binary Search: Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval covering the whole array. If the value of the search key is less than the item in the middle of the interval, narrow the interval to the lower half. Otherwise narrow it to the upper half. Repeatedly check until the value is found or the interval is empty.

Q.5 Give a brief working of queue in round robin scheduling algorithm
Solution:
[image: C:\Users\JOJO\AppData\Local\Temp\IMG_20181009_144015.jpg]
Q.6 What are the two operations of Stack? Explain any one with example and algorithm working.
Solution:
PUSH
POP
	Concept
	Definition

	Stack Push
	The procedure of inserting a new element to the top of the stack is known as Push Operation

	Stack Overflow
	Any attempt to insert a new element in already full stack is results into Stack Overflow.

	Stack Pop
	The procedure of removing element from the top of the stack is called Pop Operation.

	Stack Underflow
	Any attempt to delete an element from already empty stack results into Stack Underflow.

Sec-C
Q.1 Convert (a+(b*(c-d)+(e)-(f*g))) into postfix notation. write down the algorithm of infix to prefix conversion
Solution:
a b c d - * e + f g * - +
1. Step 1. Push “)” onto STACK, and add “(“ to end of the A
2. Step 2. Scan A from right to left and repeat step 3 to 6 for each element of A until the STACK is empty
3. Step 3. If an operand is encountered add it to B
4. Step 4. If a right parenthesis is encountered push it onto STACK
5. Step 5. If an operator is encountered then:
6. 	 a. Repeatedly pop from STACK and add to B each operator (on the top of STACK) which has same
7. or higher precedence than the operator.
8. b. Add operator to STACK
9. Step 6. If left parenthesis is encontered then
10. 	 a. Repeatedly pop from the STACK and add to B (each operator on top of stack until a left parenthesis is encounterd)
11. 	 b. Remove the left parenthesis
12. Step 7. Exit

Q.2 What is difference between singly and doubly linked list? Explain it with example. Write down the algorithm to insert a data item in singly linked list.
The main difference between singly linked list and doubly linked list is the ability to traverse. In a single linked list, node only points towards next node, and there is no pointer to previous node, which means you can not traverse back on a singly linked list. On the other hand doubly linked list maintains two pointers, towards next and previous node, which allows you to navigate in both direction in any linked list.
Step 1: If AVAIL=NULL then
 Write “Availability Stack is Empty”
 Else
 NEW_NODE=AVAIL
 AVAIL = AVAIL->LINK
Step 2: If FIRST = NULL then
 NEW_NODE -> INFO = X
 NEW_NODE -> LINK = NULL
 FIRST = NEW_NODE
 Else
 NEW_NODE -> INFO = X
 NEW_NODE -> LINK = NULL
 SAVE = FIRST
 Repeat while SAVE->LINK ≠ NULL
 SAVE = SAVE->LINK
 SAVE->LINK = NEW_NODE
Step 3: Exit
Q.3 Explain the application of stack in case of tower of Hanoi problem. Solve the tower (3, A, B, C).
N=3, Beg=A, Aux=B, End=C. also write down the algorithm.
Step 1 − Move n-1 disks from source to aux
Step 2 − Move nth disk from source to dest
Step 3 − Move n-1 disks from aux to dest
A recursive algorithm for Tower of Hanoi can be driven as follows −
START
Procedure Hanoi(disk, source, dest, aux)

 IF disk == 1, THEN
 move disk from source to dest
 ELSE
 Hanoi(disk - 1, source, aux, dest) // Step 1
 move disk from source to dest // Step 2
 Hanoi(disk - 1, aux, dest, source) // Step 3
 END IF

END Procedure
STOP
[bookmark: _GoBack]

image5.jpeg
[1)[z)[ss][] 0]

image6.jpeg
[1][z)[ss][] 0]

image7.jpeg
[1)[z)[ss][] [0]

image8.jpeg
[1)[z)[ss (][0

image9.jpeg

image10.jpeg
BERDD

image11.jpeg
(==

image12.jpeg
BRERD

image13.png
DHEEE

R 20 | 55

image14.jpeg
-y E

Y — | Fey A\ oy o () T .
S Tho gy e Vesvodre Bear

CZ}LMBD{,—(:I-F Q‘Ll.{fg&‘ R =

2 P~/»\4ima~ﬁl?fsgng e o] e opee =N

W0 '..,_._‘. -
k. B°% gﬁi&o‘ﬁwjlm:‘% B ——
| 7&9\\1’ 7Q_9_0Yj,’)jﬂv\p @rooimrcte s _‘E
DO TV ﬂw(o)\/&\"\—b\oﬂ QU gp T o
—— holecdeo) amdl 3¢t dotino Ciincoiie 1y om
_ edog, £ NpQaditen cuRele diiail as SR -
— =° Comflere 748 Qnprodinon within o
e —W\LHP\Q QUQ’Y\—F{%.fﬂ%\);OLDQl} Thomp -
e SeMCos ofe G MGE oo uaiwﬁ.
S A2 QO VYenralde o -wa, -
. Ve o
Y. The Puoters Usthom S4ofProl arol o
B3 dood e e tio Lo 1l D '
—Hro OVMSULAQ' P
e BE Y o 4 L
B howt fwecess faove 900 ol TR

I Qoebectcol lé—k/l oo ng 4, Bk

A S o ol
e M‘r.“ RIQ +ho ‘PUQ:L,QM T

image1.jpeg
[e)(=)(=) (][]

image2.jpeg
[1)[s][z)[3s][0]

image3.jpeg
[1e)[=)(=) (][]

image4.jpeg
[10)[s)[z][ss][]

