DSP

1.  Explain the decimation and interpolation process with an example.

Decimation and Interpolation are two techniques used to alter the sampling rate of a sequence. Decimation involves decreasing the sampling rate without violating the sampling theorem whereas interpolation increases the sampling rate of a sequence appropriately by considering its neighboring samples. 
Decimation is a process of dropping the samples without violating sampling theorem. 
The factor by which the signal is decimated is called as decimation factor and it is denoted by M. It is given by, 
Ex: Let x(n)=[3 2 2 4 1 0 –3 –2 –1 0 2 3] be decimated with a factor of 2. 
Let the filtered sequence be w(n)=[2.1 2 3.9 1.5 0.1 –2.9 –2 –1.1 0.1 1.9 2.9]. 
Decimated sequence y (m) can be obtained by dropping every alternative sample of w (n). 
y (m) = [2 1.5 -2.9 -1.1 1.9] 
Interpolation is a process of increasing the sampling rate by inserting new samples in between. The input output relation for the interpolation, where the sampling rate is increased by a factor L, is given as, Let x(n)= [0 3 6 9 12] be interpolated with L=3. 
If the filter coefficients of the filters are bk= [1/3 2/3 1 2/3 1/3], the interpolated sequence is After inserting zeros,
W(m)=[0 0 0 3 0 0 6 0 0 9 0 0 12]

OR
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2.  Explain the operation used in DSP to increase the sampling rate. The sequence 
] is interpolated using interpolation sequence =[1/2,1,1/2] and the interpolation factor is 2. find the interpolated sequence y(m).

Interpolation factor L=2 
W(m)={0,0,2,0,4,0,6,08} 
Y(m)={0,0,1,2,3,4,5,6,7,8} 
There are four special cases in this addressing mode. 
They are a. SAR < EAR & updated PNTR > EAR 
b. SAR < EAR & updated PNTR < SAR 
c. SAR >EAR & updated PNTR > SAR 
d. SAR > EAR & updated PNTR < EAR The buffer length in the first two case will be (EAR-SAR+1) whereas for the next low cases (SAR-EAR+1)

3.  Explain overlap-add method for linear FIR filtering of a long sequence.
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4 . Summarize the properties of DFT.
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5. (a) (i) Compute the eight-point DFT of the sequence 
Using the radix-2 decimation-in-time algorithm.
[image: E:\dsp\IMG_20180309_071932.jpg]
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Digital Signal Processing

average ﬁltenpg 81ves a sampled cosine signal such that
the sample points have been shifted by 2.5 samples with
respect to the sample points of the input. This can be seen
from figure 4(b) by comparing the positive peak at 10 in
the interpolated cosine for the input to the positive peak at
12.5 in the interpolated cosine for the output. Thus, the
six-point moving-average filter is seen to have a delz;y of
5/2 =2.5 samples.

Q6 (@ Explain. decimators and interpolator with
suitable block diagram and derivation,
[R.TU. 2013]
OR
By help of a suitable block diagram &
derivation explain the concept of decimators
& interpolators. [R.T.U. Dec. 2013]
OR \
Write short note on Decimator.[Raj. Univ. 2008]
OR
With the block diagram of a decimator,
explain the sampling rate reduction by an
integer factor M. Deduce the expression for
the same. [Raj. Univ. 2006]

(b)) How can we reconstruct the band limited

signal from its samples? [R.T.U. 2013]
OR

How Band limited signal can be reconstruct

from its samples? [R.T.U. Dec. 2013

Ans.(a) Decimation Process : Decimation is
_deerease the sampling rate. To decimate a d
x(n)byafactor] means to reduce its sam|
times. The relation between the original
signal is given by : 3

—@D
1357

y(n) ={i . The ffactor by which the signal is

decimated is called the degimationfactor.

Figure 2. shows the spectrurm of y(n)for k. = 2, the
spectrum of x(n) is expanded by L and repeated with
period 2 7 . As shown in figure 2, all the frequencies above

T . L .
Loare going to alias. Hence, to prevent sampling theorem

Violation or to avoid aliasing after decimation, the bandyidth

4
of the signal x(n) must be limited to the interval [f!J X

“2n m o

Y(w)

2n 2n
(b) Spectrum of the signal decimated by afactor of 2 \//n)
Fig. 2 5
Therefore, the decimation operation is generally
preceded by a low pass filter as shown in figure 3.
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Jor FIR linear phase systems. [RT.U. 2010
OR
Explain the concept of linear system with linear
phase? [R.T.U. Dec. 2013]
OR
Explain the linear systems with linear phase.
OR [Raj.Unlv. 2008]
Define four types of FIR generalized linear-
phase system with the help of suitable examples.
[Raj. Univ. 2004]

om phase system and

nich is inside the unit
-3, which is outside
all pass system needs

> inside the unit circle]
+3:7 1

. Ans. Types of FIR Generalized Linear Phase System

Linear phase filters may be classified into four typess
depending upon whether h(n) is symmetric or anti—
symmetric and whether N is even of odd. Each of these
filters has specific constraints on the locations of the zeros
in H(z) which, in turn, place constraints on the frequency
response magnitude.

Type I Linear Phase Filters

A type I linear phase filter has a gymmetric unit
sample response. :

h(n)=th(N-n) 0<n<N

and N is even. The Center of symmetry is about
the point & = % , which is an i‘tlt_e_gsgas illustrated in
Fig.(a)
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Fig. : Symmetries in the unit sample response for generalized
linear phase system.

he frequency response of a type I linear phase
filter may be expressed in the form
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Type II Linear Phase Filters

A type 1I linear phase filter has a symmetric unit
sample response, and N is odd. Therefore, the enter of
symmetry of h(n) occurs at the half-integer value o = N/2
illustrated in Fig.(b). The frequency response of a type I

linear phase filter may be wrmen as g
HEe) =¢ 5 X h('f)m[( i }3«»] '
; (i)
Type 11 lnur Phase Filters

A type 1II linear phase filter has a unit sample
response that i L

h(l) =Sh@-n), , .
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Q.6 Determine the current value of m,ﬂ”
discrete time LTI system which is

yn) = x(m)+ 3 5(n )
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Fourier Series Representation of Discrete Time Periodic Signals
Fourier series representation of x[n], with period ‘N’ is given as
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