
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (29)_1.jpg]
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (30)_1.jpg]
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (31)_1.jpg]
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (32)_1.jpg]
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (33)_1.jpg]

[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (34)_1.jpg]
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (35)_1.jpg]

[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (36)_1.jpg]
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (37)_1.jpg]
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (38)_1.jpg]




[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (39)_1.jpg]
[image: C:\Users\hcl\Desktop\New folder\New Doc 2018-03-06 (40)_1.jpg]
image7.jpeg
8.5 7.8 7.2 g 1
1.0 9.5 | )
00 180 15 10 o (egrees) |

Figure 2.14 Comparison of exact and approximate values of di}é"‘i.\'ity’}ol,
S . 0 mns. S for.
omnidirectional U = sin"0 POWET patte ‘

sin

SOLUTION

Since the half-power beamwidth is 9
is 6 = 45°. Thus

U@ =45 =05= sin"(45°) = (0.707)"

0°, the angle at which the half'POWer’i,o

int

Ay

or

n=2 |
Therefore, the radiation intensity of the omnidirectional antenna is 'Tepr‘t?s"e:';
U = sin?6. An infinitesimal dipole (see Chapter 4) or a small circular log
Chapter 5) are two antennas which possess such a pat.terr.l. A
Using the definition of (2-16a), the exact directivity 18

Unax = 1
P _ [2#[" ) 0 . OdOd _ -817 ; ",’“I';;.
rad — i Jo sin sin ¢ = 3 ‘

47 3
D _— —— Ol == OO .
0= g3 =5 = 1761 dB

Since the half-power beamwidth is equal to 90°, the At B
el . q A gn,the directivity based on(2

i 101 |
o = 14825 = 1.71 dB

90 — 0.0027 (90)2 - grsigg
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2.6 Numerical Techniques 53

while that-based on (2-33b) is equal to

Do= —172.4 + 191 \/0.818 + 1/90 = 1.516 = 1.807 dB

The value of n and the three values of the directivity can also be obtained using Figure
2.14, although they may not be as accurate as those given above because they have
to be taken off the graph. However, the curves can be used for other problems.
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210 Chapter 5 Loop Antennas

SOLUTION
' e (A
$=ma =755 T 625
' _ 2 2722
R, (single turn) = 1207 3 es) = 0.788 ohms

R, (8 turns) = 0.788(8)°> = 50.43 ohms
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Example 2.13
th dipole is made out of copper (o = 5.7 # 107S/m)
' Wirc_ D

efficiency of the dipole antenna at f =
{ H7

A resonant hall-waveleng,
mine the conduction-dielectric (radiation)
his 3 » 104, and the radiation resistance of the ;

/2 dipo)e ,s

il the radius of the wire

73 ohms,
Solution: At f = 10" Hz

v 3 x 10%

N e 2 =3 m
/ 10
A 3

| = —:; = ;z—m
C = 2h = 2m(3 x 1079 = 6 x 10775
For a A/2 dipole with a sinusoidal current distribution R; = i R, where R, is gi
‘ 20N CIC Mhe 15 given by

o 0.25 0%y (4 % 10-7

b= iy = OB [TAONEE X MO o,
4 6rr x 1071 5.7 x 107 i

-/ l :’ !Ay

(2-90b). See Problem 2.52. Therefore,

Thus, (’l(-_pl ) ‘.,
= ().9952 = (')A)‘:.-,,’ VY -

e.q4(dimensionless) = —————
73 4 0.349

¢ea(dB) = 1010g,,(0.9905) = —0.02
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o Example 124 P iy ?
jine the beam eﬂic1ency, within a cone of half-angle 6 = 10°, fm- a sqnare a“ i

glett; uniform field distribution and with
. aa=b=20A
b =b=3A

Solution: The solution is carned out usmg the curves of Flgute 12 15.

2. When a = b = 202, the lower abscissa scale can be used. For 91 =10°, the.i}
efficiency for the uniform aperture is about 94%.

b Fora=>b=3\and 6 =10°
' ta
u—-—2—-sm91-37rsm(10)—164

Usmg the upper absc1ssa scale, the efﬁc1ency for the umform aperture at u= 1 64 1s

about 58%.
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122 FIELD EQUIVALENCE PRINCIPLE: HUYGENS’ PRINCIPLE

The field equivalence is a principle by which actual sources, such as an antenna and
(ransmitter, are replaced by equivalent sources. The fictitious sources are said to be
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this, a closed surface S is chosen, shown dashed in Figure 12.1 (:)rface: To
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Outside §
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current densities J, and My
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Figure 12.1 Actual and equivalent models.

the oﬂ'ginal ﬁelds .(%!, H‘}) 08qu outside S. Fields E, H, dﬁerent from thev
"'p ,od“"‘; (EhHl)’ result within V). Since the currents of (12-1) and (12-2) radiate
L gin? sboun Jed space, the fields can be deterr_mned using (3-27)-(3-30a) and the
L of Figure 12.2(a). In Figure 12.2(a), R is the distance from any point on the
ggolﬂe where Js and M; exist, to the observation point.
ot e rangential components of both E and H have been used in setting up the
go faby roblem. From electromagnetic uniqueness concepts, it is known that the
equi" g ol components of only E or H are needed to determine the fields. It will be
angent ted that equivalent problems can be found which require only the magnetic-
dmonsdensiﬁes (tangemial E) or only electric current densities (tangential H). This
modiﬁcations to the cgunvalent problem of Figure 12.1(b).
foguir® he fields E, H within S can be anything (this is not the region of inter-
su';ce pe assumed that they are zero. In that case the equivalent problem of
est)y 1t 1"2 1(b) reduces to that of Figure 12.3(a) with the equivalent current densities
A ;
eing £478! 1 J, = i x (H; — H)lueo = A x H, (12:3)

M; = —fi X (E; — E)|g=0 = -0 X E, (12-4)

; of the field equivalence principle is known as_Love’s Equivalence Princi-
s forn; Since the current densities of (12-3) and (12-4) radiate in an unbounded
‘%ﬁl{l[(simé Uy € everywhere), they can be used in conjunction with (3-27)—(3-30a)
::ﬁnd the fields evcrywhe.re.. . -
Love's Equivalence Principle of Figure 12.3(a) prod9c§s a null field \_vuhm the
imaginary surface S. Since the value of the E = H = 0 within § canno_t t?e disturbed if
the pmpenies of the medium within it are changed, let us assume that it is replaced t?y
a perfect electric conductor (0 = 00). The introduction gf .the perfect conductor will
have an effect on the equivalent source J;, and it will prohibit the use f)f (3-27)- '(3-30a)
since the current densities no longer radiate into an unl?ogndec} medium. Imagine that
thegeomeu'ical configuration of the electric conductor 1s 1dent1c§l to the profile of tl}e
 imaginary surface S, over which J, and M; exist. As thej electric Fonfluctor takes t1hts
i‘.‘"phce,'asshown in Figure 12.3(b), the electric current density Js, whxf:h is tangent to c:f
 sufuce §. is short-circuited by the electric conductor. Thu.s the equivalent pr.oblem c:‘ t
- Figure 12.3(a) reduces to that of Figure 12.3(b). There exists only a magnetic curre





image4.jpeg
]

gt T gl ; ' (b) Far-field

s e

o Figu!'e 12 2 Coordinate system for aperture antenna analysis.

déﬁsitsr‘M, over S, and it radiates in the presence of the electric conductor producing
outside S the original fields E;, H;. Within § the fields are zero but, as before, this
is not a region of interest. The difficulty in trying to use the equivalent problem of

~ Figure 12.3(b) is that (3-27)-(3-30a) cannot be used, because the current densities do
not radiate into an unbounded medium. The problem of a magnetic current density
ra’diat'ing'ih the presence of an electric conducting surface must be solved. So it seems
that the equivalent problem is just as difficult as the original problem itself. '
Before some special simple geometries are considered and some suggestions are

. ;:fd;f‘?ff?gI?IOX!m?ﬁhg;COmp!ex geometries, let us introduce another equivalent prob-
“on. Reterming to Figure 12.3(a), let us assume that instead of placing a perfect electric
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Figure 12.3 Equivalence principle models.

nductdf within § we introduce a perfect magnetic conductor which will short out
0 agnetic current density and r.educe the equivalent problem to that shown in
the 17 12.3(c). As was with the equivalent problem of Figure 12.3(b), (3-27)-(3-30a)
Flguft e used with Figure 12.3(c) and the problem is just as difficult as that of
e 12.3(b) or the original of Figure 12.1(a). .

Eg.;l;e begin to see the utility of the field equivalence
Fgure 123(0), let us assume tha.t the surface of the e
oends to infinity as shgwn in Flgur.e 12.f1(a). For this geometry, the problem is to
determine how a magnetic source radiates in the presence of a flat electric conductor.
From image theory, this problem reduc.es to that of Figure 12.4(b) where an imaginary
magnetic source is introduced on the side of the conductor and takes its place (remove
conductor). Since the imaginary source is in the same direction as the equivalent
source, the equivalent problem of Figure 12.4(b) reduces to that of Figure 12.4(c).
The magnetic current density is doubled, it radiates in an unbounded medium, and (3-
21)~(3-30a) can be used. The equivalent problem of Figure 12.4(c) yields the correct
E,H fields to the right side of the interface. If the surface of the obstacle is not flat and
infinite, but its curvature is large compared to the wavelength, a good approximation
is the equivalent problem of Figure 12.3(c).

principle, especially that of
lectric conductor is flat and




image6.jpeg
E;tample 2.6
'Des1gn an antenna with ommdlrecnonal amphtude pattem wzth a half—power beam—
width of 90°. Express its radiation intensity by / = sin"6. Determine the value of n
and attempt to identify elements that exhibit such a pattern. Determine the directivity

of the antenna using (2-16a), (2-33a), and (2-33b).




